main
Simon Kellet 7 months ago
parent 7a72c42d28
commit 8fdbc3d0df
  1. 8
      .luarc.json
  2. 22
      DrawGame.lua
  3. 13
      KeyPressed.lua
  4. 50
      UpdateGame.lua
  5. BIN
      assets/.DS_Store
  6. BIN
      assets/bullet.png
  7. BIN
      assets/player1.png
  8. BIN
      assets/player2.png
  9. 78
      bullet.lua
  10. 68
      classic.lua
  11. 0
      collider.lua
  12. 6
      conf.lua
  13. BIN
      game.love
  14. BIN
      libs/.DS_Store
  15. 941
      libs/README.md
  16. 193
      libs/profile.lua
  17. 929
      libs/windfield/init.lua
  18. 568
      libs/windfield/mlib/Changes.txt
  19. 17
      libs/windfield/mlib/LICENSE.md
  20. 890
      libs/windfield/mlib/README.md
  21. 1152
      libs/windfield/mlib/mlib.lua
  22. 60
      main.lua
  23. 104
      player.lua

@ -0,0 +1,8 @@
{
"runtime.special": {
"love.filesystem.load": "loadfile"
},
"workspace.library": [
"${3rd}/love2d/library"
]
}

@ -0,0 +1,22 @@
function drawFPS()
love.graphics.setColor(1, 1, 1) -- RGB values for white are (1, 1, 1)
--love.graphics.setFont(DebugFont)
love.graphics.print("FPS: " .. love.timer.getFPS(), 1550, 10)
end
function DrawGame()
-- WindField
if DebugFlag then
World:draw()
drawFPS()
end
for _, v in ipairs(Bullets1) do
v:draw()
end
for _, v in ipairs(Bullets2) do
v:draw()
end
UserPlayer1:draw()
UserPlayer2:draw()
end

@ -0,0 +1,13 @@
function KeyPressed(key)
if key == "escape" then
love.event.quit()
end
if key == "b" then
DebugFlag = not DebugFlag
end
if key == "r" then
love.load()
end
end

@ -0,0 +1,50 @@
function UpdateGame(dt)
local max = math.max
KeyPressTime1 = max(0, KeyPressTime1 - dt)
if KeyPressTime1 <= 0 then
EnableKeyPress1 = true
end
KeyPressTime2 = max(0, KeyPressTime2 - dt)
if KeyPressTime2 <= 0 then
EnableKeyPress2 = true
end
for i, v in ipairs(Bullets1) do
v:update(dt)
if v.y < 0 then --top of screen
table.remove(Bullets1, i)
v.collider:destroy()
elseif v.y > love.graphics.getHeight() then --bottom of screen
table.remove(Bullets1, i)
v.collider:destroy()
end
if v.collider:enter("Player2") then
print("Player 2 hit")
table.remove(Bullets1, i)
v.collider:destroy()
end
end
for i, v in ipairs(Bullets2) do
v:update(dt)
if v.y < 0 then --top of screen
table.remove(Bullets2, i)
v.collider:destroy()
elseif v.y > love.graphics.getHeight() then --bottom of screen
table.remove(Bullets2, i)
v.collider:destroy()
end
if v.collider:enter("Player1") then
print("Player 1 hit")
table.remove(Bullets2, i)
v.collider:destroy()
end
end
UserPlayer1:update(dt)
UserPlayer2:update(dt)
--WindField
World:update(dt)
end

BIN
assets/.DS_Store vendored

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 827 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 556 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 KiB

@ -0,0 +1,78 @@
Bullet = Object:extend()
function Bullet:new(x, y, p, speed, rotation)
self.image = love.graphics.newImage("assets/bullet.png")
self.x = x
self.y = y
self.p = p
self.speed = speed
self.rotation = rotation
self.width = self.image:getWidth()
self.height = self.image:getHeight()
self.scaleX = 1
self.scaleY = 1
self.originX = self.width / 2
self.originY = self.height / 2
self.collider = World:newRectangleCollider(x, y, 10, 15)
self.collider:setPosition(self.x, self.y)
if self.p == 1 then
self.collider:setCollisionClass("Bullet1")
elseif self.p == 2 then
self.collider:setCollisionClass("Bullet2")
end
--TODO: find out a way to check the direction of a bullet
end
function Bullet:update(dt)
local cos = math.cos
local sin = math.sin --optimisation
local atan2 = math.atan2 --optimisation
if self.p == 1 then
local dx = math.cos(self.rotation) * self.speed * dt
local dy = math.sin(self.rotation) * self.speed * dt
self.x = self.x + dx
self.y = self.y + dy
self.collider:setPosition(self.x, self.y)
end
if self.p == 2 then
local dx = math.cos(self.rotation) * self.speed * dt
local dy = math.sin(self.rotation) * self.speed * dt
self.x = self.x + dx
self.y = self.y + dy
self.collider:setPosition(self.x, self.y)
end
end
function Bullet:draw()
for _, _ in ipairs(Bullets1) do
love.graphics.draw(
self.image,
self.x,
self.y,
self.rotation,
self.scaleX,
self.scaleY,
self.originX,
self.originY
)
end
for _, _ in ipairs(Bullets2) do
-- love.graphics.draw(self.image, self.x, self.y)
love.graphics.draw(
self.image,
self.x,
self.y,
self.rotation,
self.scaleX,
self.scaleY,
self.originX,
self.originY
)
end
end

@ -0,0 +1,68 @@
--
-- classic
--
-- Copyright (c) 2014, rxi
--
-- This module is free software; you can redistribute it and/or modify it under
-- the terms of the MIT license. See LICENSE for details.
--
local Object = {}
Object.__index = Object
function Object:new()
end
function Object:extend()
local cls = {}
for k, v in pairs(self) do
if k:find("__") == 1 then
cls[k] = v
end
end
cls.__index = cls
cls.super = self
setmetatable(cls, self)
return cls
end
function Object:implement(...)
for _, cls in pairs({...}) do
for k, v in pairs(cls) do
if self[k] == nil and type(v) == "function" then
self[k] = v
end
end
end
end
function Object:is(T)
local mt = getmetatable(self)
while mt do
if mt == T then
return true
end
mt = getmetatable(mt)
end
return false
end
function Object:__tostring()
return "Object"
end
function Object:__call(...)
local obj = setmetatable({}, self)
obj:new(...)
return obj
end
return Object

@ -0,0 +1,6 @@
--Config file for the game
function love.conf(t)
t.window.width = 1600
t.window.height = 900
t.window.title = "Game"
end

Binary file not shown.

BIN
libs/.DS_Store vendored

Binary file not shown.

@ -0,0 +1,941 @@
**windfield** is a physics module for LÖVE. It wraps LÖVE's physics API so that using box2d becomes as simple as possible.
# Contents
* [Quick Start](#quick-start)
* [Create a world](#create-a-world)
* [Create colliders](#create-colliders)
* [Create joints](#create-joints)
* [Create collision classes](#create-collision-classes)
* [Capture collision events](#capture-collision-events)
* [Query the world](#query-the-world)
* [Examples & Tips](#examples-tips)
* [Checking collisions between game objects](#checking-collisions-between-game-objects)
* [One-way Platforms](#one-way-platforms)
* [Documentation](#documentation)
* [World](#world)
* [newWorld](#newworldxg-yg-sleep)
* [update](#updatedt)
* [draw](#drawalpha)
* [destroy](#destroy)
* [addCollisionClass](#addcollisionclasscollision_class_name-collision_class)
* [newCircleCollider](#newcirclecolliderx-y-r)
* [newRectangleCollider](#newrectanglecolliderx-y-w-h)
* [newBSGRectangleCollider](#newbsgrectanglecolliderx-y-w-h-corner_cut_size)
* [newPolygonCollider](#newpolygoncollidervertices)
* [newLineCollider](#newlinecolliderx1-y1-x2-y2)
* [newChainCollider](#newchaincollidervertices-loop)
* [queryCircleArea](#querycircleareax-y-r-collision_class_name)
* [queryRectangleArea](#queryrectangleareax-y-w-h-collision_class_names)
* [queryPolygonArea](#querypolygonareavertices-collision_class_names)
* [queryLine](#querylinex1-y1-x2-y2-collision_class_names)
* [addJoint](#addjointjoint_type)
* [removeJoint](#removejointjoint)
* [setExplicitCollisionEvents](#setexplicitcollisioneventsvalue)
* [setQueryDebugDrawing](#setquerydebugdrawingvalue)
* [Collider](#collider)
* [destroy](#destroy-1)
* [setCollisionClass](#setcollisionclasscollision_class_name)
* [enter](#enterother_collision_class_name)
* [getEnterCollisionData](#getentercollisiondataother_collision_class_name)
* [exit](#exitother_collision_class_name)
* [getExitCollisionData](#getexitcollisiondataother_collision_class_name)
* [stay](#stayother_collision_class_name)
* [getStayCollisionData](#getstaycollisiondataother_collision_class_name)
* [setPreSolve](#setpresolvecallback)
* [setPostSolve](#setpostsolvecallback)
* [addShape](#addshapeshape_name-shape_type)
* [removeShape](#removeshapeshape_name)
* [setObject](#setobjectobject)
* [getObject](#getobject)
<br>
# Quick Start
Place the `windfield` folder inside your project and require it:
```lua
wf = require 'windfield'
```
<br>
## Create a world
A physics world can be created just like in box2d. The world returned by `wf.newWorld` contains all the functions of a [LÖVE physics World](https://love2d.org/wiki/World) as well as additional ones defined by this library.
```lua
function love.load()
world = wf.newWorld(0, 0, true)
world:setGravity(0, 512)
end
function love.update(dt)
world:update(dt)
end
```
<br>
## Create colliders
A collider is a composition of a single body, fixture and shape. For most use cases whenever box2d is needed a body will only have one fixture/shape attached to it, so it makes sense to work primarily on that level of abstraction. Colliders contain all the functions of a LÖVE physics [Body](https://love2d.org/wiki/Body), [Fixture](https://love2d.org/wiki/Fixture) and [Shape](https://love2d.org/wiki/Shape) as well as additional ones defined by this library:
```lua
function love.load()
...
box = world:newRectangleCollider(400 - 50/2, 0, 50, 50)
box:setRestitution(0.8)
box:applyAngularImpulse(5000)
ground = world:newRectangleCollider(0, 550, 800, 50)
wall_left = world:newRectangleCollider(0, 0, 50, 600)
wall_right = world:newRectangleCollider(750, 0, 50, 600)
ground:setType('static') -- Types can be 'static', 'dynamic' or 'kinematic'. Defaults to 'dynamic'
wall_left:setType('static')
wall_right:setType('static')
end
...
function love.draw()
world:draw() -- The world can be drawn for debugging purposes
end
```
And that looks like this:
<p align="center">
<img src="http://i.imgur.com/ytfhmjc.gif"/>
</p>
<br>
## Create joints
Joints are mostly unchanged from how they work normally in box2d:
```lua
function love.load()
...
box_1 = world:newRectangleCollider(400 - 50/2, 0, 50, 50)
box_1:setRestitution(0.8)
box_2 = world:newRectangleCollider(400 - 50/2, 50, 50, 50)
box_2:setRestitution(0.8)
box_2:applyAngularImpulse(5000)
joint = world:addJoint('RevoluteJoint', box_1, box_2, 400, 50, true)
...
end
```
And that looks like this:
<p align="center">
<img src="http://i.imgur.com/tSqkxJR.gif"/>
</p>
<br>
## Create collision classes
Collision classes are used to make colliders ignore other colliders of certain classes and to capture collision events between colliders. The same concept goes by the name of 'collision layer' or 'collision tag' in other engines. In the example below we add a Solid and Ghost collision class. The Ghost collision class is set to ignore the Solid collision class.
```lua
function love.load()
...
world:addCollisionClass('Solid')
world:addCollisionClass('Ghost', {ignores = {'Solid'}})
box_1 = world:newRectangleCollider(400 - 100, 0, 50, 50)
box_1:setRestitution(0.8)
box_2 = world:newRectangleCollider(400 + 50, 0, 50, 50)
box_2:setCollisionClass('Ghost')
ground = world:newRectangleCollider(0, 550, 800, 50)
ground:setType('static')
ground:setCollisionClass('Solid')
...
end
```
And that looks like this:
<p align="center">
<img src="http://i.imgur.com/j7IhVSe.gif"/>
</p>
The box that was set be of the Ghost collision class ignored the ground and went right through it, since the ground is set to be of the Solid collision class.
<br>
## Capture collision events
Collision events can be captured inside the update function by calling the `enter`, `exit` or `stay` functions of a collider. In the example below, whenever the box collider enters contact with another collider of the Solid collision class it will get pushed to the right:
```lua
function love.update(dt)
...
if box:enter('Solid') then
box:applyLinearImpulse(1000, 0)
box:applyAngularImpulse(5000)
end
end
```
And that looks like this:
<p align="center">
<img src="http://i.imgur.com/uF1bqKM.gif"/>
</p>
<br>
## Query the world
The world can be queried with a few area functions and then all colliders inside that area will be returned. In the example below, the world is queried at position 400, 300 with a circle of radius 100, and then all colliders in that area are pushed to the right and down.
```lua
function love.load()
world = wf.newWorld(0, 0, true)
world:setQueryDebugDrawing(true) -- Draws the area of a query for 10 frames
colliders = {}
for i = 1, 200 do
table.insert(colliders, world:newRectangleCollider(love.math.random(0, 800), love.math.random(0, 600), 25, 25))
end
end
function love.update(dt)
world:update(dt)
end
function love.draw()
world:draw()
end
function love.keypressed(key)
if key == 'p' then
local colliders = world:queryCircleArea(400, 300, 100)
for _, collider in ipairs(colliders) do
collider:applyLinearImpulse(1000, 1000)
end
end
end
```
And that looks like this:
<p align="center">
<img src="http://i.imgur.com/YVxAiuu.gif"/>
</p>
<br>
# Examples & Tips
## Checking collisions between game objects
The most common use case for a physics engine is doing things when things collide. For instance, when the Player collides with an enemy you might want to deal damage to the player. Here's the way to achieve that with this library:
```lua
-- in Player.lua
function Player:new()
self.collider = world:newRectangleCollider(...)
self.collider:setCollisionClass('Player')
self.collider:setObject(self)
end
-- in Enemy.lua
function Enemy:new()
self.collider = world:newRectangleCollider(...)
self.collider:setCollisionClass('Enemy')
self.collider:setObject(self)
end
```
First we define in the constructor of both classes the collider that should be attached to them. We set their collision classes (Player and Enemy) and then link the object to the colliders with `setObject`. With this, we can capture collision events between both and then do whatever we wish when a collision happens:
```lua
-- in Player.lua
function Player:update(dt)
if self.collider:enter('Enemy') then
local collision_data = self.collider:getEnterCollisionData('Enemy')
local enemy = collision_data.collider:getObject()
-- Kills the enemy on hit but also take damage
enemy:die()
self:takeDamage(10)
end
end
```
<br>
## One-way Platforms
A common problem people have with using 2D physics engines seems to be getting one-way platforms to work. Here's one way to achieve this with this library:
```lua
function love.load()
world = wf.newWorld(0, 512, true)
world:addCollisionClass('Platform')
world:addCollisionClass('Player')
ground = world:newRectangleCollider(100, 500, 600, 50)
ground:setType('static')
platform = world:newRectangleCollider(350, 400, 100, 20)
platform:setType('static')
platform:setCollisionClass('Platform')
player = world:newRectangleCollider(390, 450, 20, 40)
player:setCollisionClass('Player')
player:setPreSolve(function(collider_1, collider_2, contact)
if collider_1.collision_class == 'Player' and collider_2.collision_class == 'Platform' then
local px, py = collider_1:getPosition()
local pw, ph = 20, 40
local tx, ty = collider_2:getPosition()
local tw, th = 100, 20
if py + ph/2 > ty - th/2 then contact:setEnabled(false) end
end
end)
end
function love.keypressed(key)
if key == 'space' then
player:applyLinearImpulse(0, -1000)
end
end
```
And that looks like this:
<p align="center">
<img src="http://i.imgur.com/ouwxVRH.gif"/>
</p>
The way this works is that by disabling the contact before collision response is applied (so in the preSolve callback) we can make a collider ignore another. And then all we do is check to see if the player is below platform, and if he is then we disable the contact.
<br>
# Documentation
## World
On top of containing all functions exposed in this documentation it also contains all functions of a [box2d World](https://love2d.org/wiki/World).
---
#### `.newWorld(xg, yg, sleep)`
Creates a new World.
```lua
world = wf.newWorld(0, 0, true)
```
Arguments:
* `xg` `(number)` - The world's x gravity component
* `yg` `(number)` - The world's y gravity component
* `sleep=true` `(boolean)` - If the world's bodies are allowed to sleep or not
Returns:
* `World` `(table)` - the World object, containing all attributes and methods defined below as well as all of a [box2d World](https://love2d.org/wiki/World)
---
#### `:update(dt)`
Updates the world.
```lua
world:update(dt)
```
Arguments:
* `dt` `(number)` - The time step delta
---
#### `:draw(alpha)`
Draws the world, drawing all colliders, joints and world queries (for debugging purposes).
```lua
world:draw() -- default drawing
world:draw(128) -- semi transparent drawing
```
Arguments:
* `alpha=255` `(number)` - The optional alpha value to use when drawing, defaults to 255
---
#### `:destroy()`
Destroys the world and removes all bodies, fixtures, shapes and joints from it. This must be called whenever the World is to discarded otherwise it will result in it not getting collected (and so memory will leak).
```lua
world:destroy()
```
---
#### `:addCollisionClass(collision_class_name, collision_class)`
Adds a new collision class to the World. Collision classes are attached to Colliders and defined their behaviors in terms of which ones will physically ignore each other and which ones will generate collision events between each other. All collision classes must be added before any Collider is created. If `world:setExplicitCollisionEvents` is set to false (the default setting) then `enter`, `exit`, `pre` and `post` settings don't need to be specified, otherwise they do.
```lua
world:addCollisionClass('Player', {ignores = {'NPC', 'Enemy'}})
```
Arguments:
* `collision_class_name` `(string)` - The unique name of the collision class
* `collision_class` `(table)` - The collision class. This table can contain:
Settings:
* `[ignores]` `(table[string])` - The collision classes that will be physically ignored
* `[enter]` `(table[string])` - The collision classes that will generate collision events with the collider of this collision class when they enter contact with each other
* `[exit]` `(table[string])` - The collision classes that will generate collision events with the collider of this collision class when they exit contact with each other
* `[pre]` `(table[string])` - The collision classes that will generate collision events with the collider of this collision class right before collision response is applied
* `[post]` `(table[string])` - The collision classes that will generate collision events with the collider of this collision class right after collision response is applied
---
#### `:newCircleCollider(x, y, r)`
Creates a new CircleCollider.
```lua
circle = world:newCircleCollider(100, 100, 30)
```
Arguments:
* `x` `(number)` - The x position of the circle's center
* `y` `(number)` - The y position of the circle's center
* `r` `(number)` - The radius of the circle
Returns:
* `Collider` `(table)` - The newly created CircleCollider
---
#### `:newRectangleCollider(x, y, w, h)`
Creates a new RectangleCollider.
```lua
rectangle = world:newRectangleCollider(100, 100, 50, 50)
```
Arguments:
* `x` `(number)` - The x position of the rectangle's top-left corner
* `y` `(number)` - The y position of the rectangle's top-left corner
* `w` `(number)` - The width of the rectangle
* `h` `(number)` - The height of the rectangle
Returns:
* `Collider` `(table)` - The newly created RectangleCollider
---
#### `:newBSGRectangleCollider(x, y, w, h, corner_cut_size)`
Creates a new BSGRectangleCollider, which is a rectangle with its corners cut (an octagon).
```lua
bsg_rectangle = world:newBSGRectangleCollider(100, 100, 50, 50, 5)
```
Arguments:
* `x` `(number)` - The x position of the rectangle's top-left corner
* `y` `(number)` - The y position of the rectangle's top-left corner
* `w` `(number)` - The width of the rectangle
* `h` `(number)` - The height of the rectangle
* `corner_cut_size` `(number)` - The corner cut size
Returns:
* `Collider` `(table)` - The newly created BSGRectangleCollider
---
#### `:newPolygonCollider(vertices)`
Creates a new PolygonCollider.
```lua
polygon = world:newPolygonCollider({10, 10, 10, 20, 20, 20, 20, 10})
```
Arguments:
* `vertices` `(table[number])` - The polygon vertices as a table of numbers
Returns:
* `Collider` `(table)` - The newly created PolygonCollider
---
#### `:newLineCollider(x1, y1, x2, y2)`
Creates a new LineCollider.
```lua
line = world:newLineCollider(100, 100, 200, 200)
```
Arguments:
* `x1` `(number)` - The x position of the first point of the line
* `y1` `(number)` - The y position of the first point of the line
* `x2` `(number)` - The x position of the second point of the line
* `y2` `(number)` - The y position of the second point of the line
Returns:
* `Collider` `(table)` - The newly created LineCollider
---
#### `:newChainCollider(vertices, loop)`
Creates a new ChainCollider.
```lua
chain = world:newChainCollider({10, 10, 10, 20, 20, 20}, true)
```
Arguments:
* `vertices` `(table[number])` - The chain vertices as a table of numbers
* `loop` `(boolean)` - If the chain should loop back from the last to the first point
Returns:
* `Collider` `(table)` - The newly created ChainCollider
---
#### `:queryCircleArea(x, y, r, collision_class_names)`
Queries a circular area around a point for colliders.
```lua
colliders_1 = world:queryCircleArea(100, 100, 50, {'Enemy', 'NPC'})
colliders_2 = world:queryCircleArea(100, 100, 50, {'All', except = {'Player'}})
```
Arguments:
* `x` `(number)` - The x position of the circle's center
* `y` `(number)` - The y position of the circle's center
* `r` `(number)` - The radius of the circle
* `[collision_class_names='All']` `(table[string])` - A table of strings with collision class names to be queried. The special value `'All'` (default) can be used to query for all existing collision classes. Another special value `except` can be used to exclude some collision classes when `'All'` is used.
Returns:
* `table[Collider]` - The table of colliders with the specified collision classes inside the area
---
#### `:queryRectangleArea(x, y, w, h, collision_class_names)`
Queries a rectangular area for colliders.
```lua
colliders_1 = world:queryRectangleArea(100, 100, 50, 50, {'Enemy', 'NPC'})
colliders_2 = world:queryRectangleArea(100, 100, 50, 50, {'All', except = {'Player'}})
```
Arguments:
* `x` `(number)` - The x position of the rectangle's top-left corner
* `y` `(number)` - The y position of the rectangle's top-left corner
* `w` `(number)` - The width of the rectangle
* `h` `(number)` - The height of the rectangle
* `[collision_class_names='All']` `(table[string])` - A table of strings with collision class names to be queried. The special value `'All'` (default) can be used to query for all existing collision classes. Another special value `except` can be used to exclude some collision classes when `'All'` is used.
Returns:
* `table[Collider]` - The table of colliders with the specified collision classes inside the area
---
#### `:queryPolygonArea(vertices, collision_class_names)`
Queries a polygon area for colliders.
```lua
colliders_1 = world:queryPolygonArea({10, 10, 20, 10, 20, 20, 10, 20}, {'Enemy'})
colliders_2 = world:queryPolygonArea({10, 10, 20, 10, 20, 20, 10, 20}, {'All', except = {'Player'}})
```
Arguments:
* `vertices` `(table[number])` - The polygon vertices as a table of numbers
* `[collision_class_names='All']` `(table[string])` - A table of strings with collision class names to be queried. The special value `'All'` (default) can be used to query for all existing collision classes. Another special value `except` can be used to exclude some collision classes when `'All'` is used.
Returns:
* `table[Collider]` - The table of colliders with the specified collision classes inside the area
---
#### `:queryLine(x1, y1, x2, y2, collision_class_names)`
Queries for colliders that intersect with a line.
```lua
colliders_1 = world:queryLine(100, 100, 200, 200, {'Enemy', 'NPC', 'Projectile'})
colliders_2 = world:queryLine(100, 100, 200, 200, {'All', except = {'Player'}})
```
Arguments:
* `x1` `(number)` - The x position of the first point of the line
* `y1` `(number)` - The y position of the first point of the line
* `x2` `(number)` - The x position of the second point of the line
* `y2` `(number)` - The y position of the second point of the line
* `[collision_class_names='All']` `(table[string])` - A table of strings with collision class names to be queried. The special value `'All'` (default) can be used to query for all existing collision classes. Another special value `except` can be used to exclude some collision classes when `'All'` is used.
Returns:
* `table[Collider]` - The table of colliders with the specified collision classes inside the area
---
#### `:addJoint(joint_type, ...)`
Adds a joint to the world.
```lua
joint = world:addJoint('RevoluteJoint', collider_1, collider_2, 50, 50, true)
```
Arguments:
* `joint_type` `(string)` - The joint type, it can be `'DistanceJoint'`, `'FrictionJoint'`, `'GearJoint'`, `'MouseJoint'`, `'PrismaticJoint'`, `'PulleyJoint'`, `'RevoluteJoint'`, `'RopeJoint'`, `'WeldJoint'` or `'WheelJoint'`
* `...` `(*)` - The joint creation arguments that are different for each joint type, check [here](https://love2d.org/wiki/Joint) for more details
Returns:
* `joint` `(Joint)` - The newly created Joint
---
#### `:removeJoint(joint)`
Removes a joint from the world.
```lua
joint = world:addJoint('RevoluteJoint', collider_1, collider_2, 50, 50, true)
world:removeJoint(joint)
```
Arguments:
* `joint` `(Joint)` - The joint to be removed
---
#### `:setExplicitCollisionEvents(value)`
Sets collision events to be explicit or not. If explicit, then collision events will only be generated between collision classes when they are specified in `addCollisionClasses`. By default this is set to false, meaning that collision events are generated between all collision classes. The main reason why you might want to set this to true is for performance, since not generating collision events between every collision class will require less computation. This function must be called before any collision class is added to the world.
```lua
world:setExplicitCollisionEvents(true)
```
Arguments:
* `value` `(boolean)` - If collision events are explicit or not
---
#### `:setQueryDebugDrawing(value)`
Sets query debug drawing to be active or not. If active, then collider queries will be drawn to the screen for 10 frames. This is used for debugging purposes and incurs a performance penalty. Don't forget to turn it off!
```lua
world:setQueryDebugDrawing(true)
```
Arguments:
* `value` `(boolean)` - If query debug drawing is active or not
---
## Collider
On top of containing all functions exposed in this documentation it also contains all functions of a [Body](https://love2d.org/wiki/Body), [Fixture](https://love2d.org/wiki/Fixture) and [Shape](https://love2d.org/wiki/Shape).
---
#### `:destroy()`
Destroys the collider and removes it from the world. This must be called whenever the Collider is to discarded otherwise it will result in it not getting collected (and so memory will leak).
```lua
collider:destroy()
```
---
#### `:setCollisionClass(collision_class_name)`
Sets this collider's collision class. The collision class must be a valid one previously added with `world:addCollisionClass`.
```lua
world:addCollisionClass('Player')
collider = world:newRectangleCollider(100, 100, 50, 50)
collider:setCollisionClass('Player')
```
Arguments:
* `collision_class_name` `(string)` - The name of the collision class
---
#### `:enter(other_collision_class_name)`
Checks for collision enter events from this collider with another. Enter events are generated on the frame when one collider enters contact with another.
```lua
-- in some update function
if collider:enter('Enemy') then
print('Collision entered!')
end
```
Arguments:
* `other_collision_class_name` `(string)` - The name of the target collision class
Returns:
* `boolean` - If the enter collision event between both colliders happened on this frame or not
---
#### `:getEnterCollisionData(other_collision_class_name)`
Gets the collision data generated from the last collision enter event
```lua
-- in some update function
if collider:enter('Enemy') then
local collision_data = collider:getEnterCollisionData('Enemy')
print(collision_data.collider, collision_data.contact)
end
```
Arguments:
* `other_collision_class_name` `(string)` - The name of the target collision class
Returns:
* `collision_data` `(table[Collider, Contact])` - A table containing the Collider and the [Contact](https://love2d.org/wiki/Contact) generated from the last enter collision event
---
#### `:exit(other_collision_class_name)`
Checks for collision exit events from this collider with another. Exit events are generated on the frame when one collider exits contact with another.
```lua
-- in some update function
if collider:exit('Enemy') then
print('Collision exited!')
end
```
Arguments:
* `other_collision_class_name` `(string)` - The name of the target collision class
Returns:
* `boolean` - If the exit collision event between both colliders happened on this frame or not
---
#### `:getExitCollisionData(other_collision_class_name)`
Gets the collision data generated from the last collision exit event
```lua
-- in some update function
if collider:exit('Enemy') then
local collision_data = collider:getEnterCollisionData('Enemy')
print(collision_data.collider, collision_data.contact)
end
```
Arguments:
* `other_collision_class_name` `(string)` - The name of the target collision class
Returns:
* `collision_data` `(table[Collider, Contact])` - A table containing the Collider and the [Contact](https://love2d.org/wiki/Contact) generated from the last exit collision event
---
#### `:stay(other_collision_class_name)`
Checks for collision stay events from this collider with another. Stay events are generated on every frame when one collider is in contact with another.
```lua
-- in some update function
if collider:stay('Enemy') then
print('Collision staying!')
end
```
Arguments:
* `other_collision_class_name` `(string)` - The name of the target collision class
Returns:
* `boolean` - If the stay collision event between both colliders is happening on this frame or not
---
#### `:getStayCollisionData(other_collision_class_name)`
Gets the collision data generated from the last collision stay event
```lua
-- in some update function
if collider:stay('Enemy') then
local collision_data_list = collider:getStayCollisionData('Enemy')
for _, collision_data in ipairs(collision_data_list) do
print(collision_data.collider, collision_data.contact)
end
end
```
Arguments:
* `other_collision_class_name` `(string)` - The name of the target collision class
Returns:
* `collision_data_list` `(table[table[Collider, Contact]])` - A table containing multiple Colliders and [Contacts](https://love2d.org/wiki/Contact) generated from the last stay collision event. Usually this list will be of size 1, but sometimes this collider will be staying in contact with multiple other colliders on the same frame, and so those multiple stay events (with multiple colliders) are returned.
---
#### `:setPreSolve(callback)`
Sets the preSolve callback. Unlike with `:enter` or `:exit` that can be delayed and checked after the physics simulation is done for this frame, both preSolve and postSolve must be callbacks that are resolved immediately, since they may change how the rest of the simulation plays out on this frame.
```lua
collider:setPreSolve(function(collider_1, collider_2, contact)
contact:setEnabled(false)
end
```
Arguments:
* `callback` `(function)` - The preSolve callback. Receives `collider_1`, `collider_2` and `contact` as arguments
---
#### `:setPostSolve(callback)`
Sets the postSolve callback. Unlike with `:enter` or `:exit` that can be delayed and checked after the physics simulation is done for this frame, both preSolve and postSolve must be callbacks that are resolved immediately, since they may change how the rest of the simulation plays out on this frame.
```lua
collider:setPostSolve(function(collider_1, collider_2, contact, ni1, ti1, ni2, ti2)
contact:setEnabled(false)
end
```
Arguments:
* `callback` `(function)` - The postSolve callback. Receives `collider_1`, `collider_2`, `contact`, `normal_impulse1`, `tangent_impulse1`, `normal_impulse2` and `tangent_impulse2` as arguments
---
#### `:addShape(shape_name, shape_type, ...)`
Adds a shape to the collider. A shape can be accessed via collider.shapes[shape_name]. A fixture of the same name is also added to attach the shape to the collider body. A fixture can be accessed via collider.fixtures[fixture_name].
Arguments:
* `shape_name` `(string)` - The unique name of the shape
* `shape_type` `(string)` - The shape type, can be `'ChainShape'`, `'CircleShape'`, `'EdgeShape'`, `'PolygonShape'` or `'RectangleShape'`
* `...` `(*)` - The shape creation arguments that are different for each shape. Check [here](https://love2d.org/wiki/Shape) for more details
---
#### `:removeShape(shape_name)`
Removes a shape from the collider (also removes the accompanying fixture).
Arguments:
* `shape_name` `(string)` - The unique name of the shape to be removed. Must be a name previously added with `:addShape`
---
#### `:setObject(object)`
Sets the collider's object. This is useful to set to the object the collider belongs to, so that when a query call is made and colliders are returned you can immediately get the pertinent object.
```lua
-- in the constructor of some object
self.collider = world:newRectangleCollider(...)
self.collider:setObject(self)
```
Arguments:
* `object` `(*)` - The object that this collider belongs to
---
#### `:getObject()`
Gets the object a collider belongs to.
```lua
-- in an update function
if self.collider:enter('Enemy') then
local collision_data = self.collider:getEnterCollisionData('SomeTag')
-- gets the reference to the enemy object, the enemy object must have used :setObject(self) to attach itself to the collider otherwise this wouldn't work
local enemy = collision_data.collider:getObject()
end
```
Returns:
* `object` `(*)` - The object that is attached to this collider
---
# LICENSE
You can do whatever you want with this. See the license at the top of the main file.

@ -0,0 +1,193 @@
local clock = os.clock
--- Simple profiler written in Lua.
-- @module profile
-- @alias profile
local profile = {}
-- function labels
local _labeled = {}
-- function definitions
local _defined = {}
-- time of last call
local _tcalled = {}
-- total execution time
local _telapsed = {}
-- number of calls
local _ncalls = {}
-- list of internal profiler functions
local _internal = {}
--- This is an internal function.
-- @tparam string event Event type
-- @tparam number line Line number
-- @tparam[opt] table info Debug info table
function profile.hooker(event, line, info)
info = info or debug.getinfo(2, 'fnS')
local f = info.func
-- ignore the profiler itself
if _internal[f] or info.what ~= "Lua" then
return
end
-- get the function name if available
if info.name then
_labeled[f] = info.name
end
-- find the line definition
if not _defined[f] then
_defined[f] = info.short_src..":"..info.linedefined
_ncalls[f] = 0
_telapsed[f] = 0
end
if _tcalled[f] then
local dt = clock() - _tcalled[f]
_telapsed[f] = _telapsed[f] + dt
_tcalled[f] = nil
end
if event == "tail call" then
local prev = debug.getinfo(3, 'fnS')
profile.hooker("return", line, prev)
profile.hooker("call", line, info)
elseif event == 'call' then
_tcalled[f] = clock()
else
_ncalls[f] = _ncalls[f] + 1
end
end
--- Sets a clock function to be used by the profiler.
-- @tparam function func Clock function that returns a number
function profile.setclock(f)
assert(type(f) == "function", "clock must be a function")
clock = f
end
--- Starts collecting data.
function profile.start()
if rawget(_G, 'jit') then
jit.off()
jit.flush()
end
debug.sethook(profile.hooker, "cr")
end
--- Stops collecting data.
function profile.stop()
debug.sethook()
for f in pairs(_tcalled) do
local dt = clock() - _tcalled[f]
_telapsed[f] = _telapsed[f] + dt
_tcalled[f] = nil
end
-- merge closures
local lookup = {}
for f, d in pairs(_defined) do
local id = (_labeled[f] or '?')..d
local f2 = lookup[id]
if f2 then
_ncalls[f2] = _ncalls[f2] + (_ncalls[f] or 0)
_telapsed[f2] = _telapsed[f2] + (_telapsed[f] or 0)
_defined[f], _labeled[f] = nil, nil
_ncalls[f], _telapsed[f] = nil, nil
else
lookup[id] = f
end
end
collectgarbage('collect')
end
--- Resets all collected data.
function profile.reset()
for f in pairs(_ncalls) do
_ncalls[f] = 0
end
for f in pairs(_telapsed) do
_telapsed[f] = 0
end
for f in pairs(_tcalled) do
_tcalled[f] = nil
end
collectgarbage('collect')
end
--- This is an internal function.
-- @tparam function a First function
-- @tparam function b Second function
-- @treturn boolean True if "a" should rank higher than "b"
function profile.comp(a, b)
local dt = _telapsed[b] - _telapsed[a]
if dt == 0 then
return _ncalls[b] < _ncalls[a]
end
return dt < 0
end
--- Generates a report of functions that have been called since the profile was started.
-- Returns the report as a numeric table of rows containing the rank, function label, number of calls, total execution time and source code line number.
-- @tparam[opt] number limit Maximum number of rows
-- @treturn table Table of rows
function profile.query(limit)
local t = {}
for f, n in pairs(_ncalls) do
if n > 0 then
t[#t + 1] = f
end
end
table.sort(t, profile.comp)
if limit then
while #t > limit do
table.remove(t)
end
end
for i, f in ipairs(t) do
local dt = 0
if _tcalled[f] then
dt = clock() - _tcalled[f]
end
t[i] = { i, _labeled[f] or '?', _ncalls[f], _telapsed[f] + dt, _defined[f] }
end
return t
end
local cols = { 3, 29, 11, 24, 32 }
--- Generates a text report of functions that have been called since the profile was started.
-- Returns the report as a string that can be printed to the console.
-- @tparam[opt] number limit Maximum number of rows
-- @treturn string Text-based profiling report
function profile.report(n)
local out = {}
local report = profile.query(n)
for i, row in ipairs(report) do
for j = 1, 5 do
local s = row[j]
local l2 = cols[j]
s = tostring(s)
local l1 = s:len()
if l1 < l2 then
s = s..(' '):rep(l2-l1)
elseif l1 > l2 then
s = s:sub(l1 - l2 + 1, l1)
end
row[j] = s
end
out[i] = table.concat(row, ' | ')
end
local row = " +-----+-------------------------------+-------------+--------------------------+----------------------------------+ \n"
local col = " | # | Function | Calls | Time | Code | \n"
local sz = row..col..row
if #out > 0 then
sz = sz..' | '..table.concat(out, ' | \n | ')..' | \n'
end
return '\n'..sz..row
end
-- store all internal profiler functions
for _, v in pairs(profile) do
if type(v) == "function" then
_internal[v] = true
end
end
return profile

@ -0,0 +1,929 @@
--[[
The MIT License (MIT)
Copyright (c) 2018 SSYGEN
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
]]--
local path = ... .. '.'
local wf = {}
wf.Math = require(path .. 'mlib.mlib')
World = {}
World.__index = World
function wf.newWorld(xg, yg, sleep)
local world = wf.World.new(wf, xg, yg, sleep)
world.box2d_world:setCallbacks(world.collisionOnEnter, world.collisionOnExit, world.collisionPre, world.collisionPost)
world:collisionClear()
world:addCollisionClass('Default')
-- Points all box2d_world functions to this wf.World object
-- This means that the user can call world:setGravity for instance without having to say world.box2d_world:setGravity
for k, v in pairs(world.box2d_world.__index) do
if k ~= '__gc' and k ~= '__eq' and k ~= '__index' and k ~= '__tostring' and k ~= 'update' and k ~= 'destroy' and k ~= 'type' and k ~= 'typeOf' then
world[k] = function(self, ...)
return v(self.box2d_world, ...)
end
end
end
return world
end
function World.new(wf, xg, yg, sleep)
local self = {}
local settings = settings or {}
self.wf = wf
self.draw_query_for_n_frames = 10
self.query_debug_drawing_enabled = false
self.explicit_collision_events = false
self.collision_classes = {}
self.masks = {}
self.is_sensor_memo = {}
self.query_debug_draw = {}
love.physics.setMeter(32)
self.box2d_world = love.physics.newWorld(xg, yg, sleep)
return setmetatable(self, World)
end
function World:update(dt)
self:collisionEventsClear()
self.box2d_world:update(dt)
end
function World:draw(alpha)
-- get the current color values to reapply
local r, g, b, a = love.graphics.getColor()
-- alpha value is optional
alpha = alpha or 255
-- Colliders debug
love.graphics.setColor(222, 222, 222, alpha)
local bodies = self.box2d_world:getBodies()
for _, body in ipairs(bodies) do
local fixtures = body:getFixtures()
for _, fixture in ipairs(fixtures) do
if fixture:getShape():type() == 'PolygonShape' then
love.graphics.polygon('line', body:getWorldPoints(fixture:getShape():getPoints()))
elseif fixture:getShape():type() == 'EdgeShape' or fixture:getShape():type() == 'ChainShape' then
local points = {body:getWorldPoints(fixture:getShape():getPoints())}
for i = 1, #points, 2 do
if i < #points-2 then love.graphics.line(points[i], points[i+1], points[i+2], points[i+3]) end
end
elseif fixture:getShape():type() == 'CircleShape' then
local body_x, body_y = body:getPosition()
local shape_x, shape_y = fixture:getShape():getPoint()
local r = fixture:getShape():getRadius()
love.graphics.circle('line', body_x + shape_x, body_y + shape_y, r, 360)
end
end
end
love.graphics.setColor(255, 255, 255, alpha)
-- Joint debug
love.graphics.setColor(222, 128, 64, alpha)
local joints = self.box2d_world:getJoints()
for _, joint in ipairs(joints) do
local x1, y1, x2, y2 = joint:getAnchors()
if x1 and y1 then love.graphics.circle('line', x1, y1, 4) end
if x2 and y2 then love.graphics.circle('line', x2, y2, 4) end
end
love.graphics.setColor(255, 255, 255, alpha)
-- Query debug
love.graphics.setColor(64, 64, 222, alpha)
for _, query_draw in ipairs(self.query_debug_draw) do
query_draw.frames = query_draw.frames - 1
if query_draw.type == 'circle' then
love.graphics.circle('line', query_draw.x, query_draw.y, query_draw.r)
elseif query_draw.type == 'rectangle' then
love.graphics.rectangle('line', query_draw.x, query_draw.y, query_draw.w, query_draw.h)
elseif query_draw.type == 'line' then
love.graphics.line(query_draw.x1, query_draw.y1, query_draw.x2, query_draw.y2)
elseif query_draw.type == 'polygon' then
local triangles = love.math.triangulate(query_draw.vertices)
for _, triangle in ipairs(triangles) do love.graphics.polygon('line', triangle) end
end
end
for i = #self.query_debug_draw, 1, -1 do
if self.query_debug_draw[i].frames <= 0 then
table.remove(self.query_debug_draw, i)
end
end
love.graphics.setColor(r, g, b, a)
end
function World:setQueryDebugDrawing(value)
self.query_debug_drawing_enabled = value
end
function World:setExplicitCollisionEvents(value)
self.explicit_collision_events = value
end
function World:addCollisionClass(collision_class_name, collision_class)
if self.collision_classes[collision_class_name] then error('Collision class ' .. collision_class_name .. ' already exists.') end
if self.explicit_collision_events then
self.collision_classes[collision_class_name] = collision_class or {}
else
self.collision_classes[collision_class_name] = collision_class or {}
self.collision_classes[collision_class_name].enter = {}
self.collision_classes[collision_class_name].exit = {}
self.collision_classes[collision_class_name].pre = {}
self.collision_classes[collision_class_name].post = {}
for c_class_name, _ in pairs(self.collision_classes) do
table.insert(self.collision_classes[collision_class_name].enter, c_class_name)
table.insert(self.collision_classes[collision_class_name].exit, c_class_name)
table.insert(self.collision_classes[collision_class_name].pre, c_class_name)
table.insert(self.collision_classes[collision_class_name].post, c_class_name)
end
for c_class_name, _ in pairs(self.collision_classes) do
table.insert(self.collision_classes[c_class_name].enter, collision_class_name)
table.insert(self.collision_classes[c_class_name].exit, collision_class_name)
table.insert(self.collision_classes[c_class_name].pre, collision_class_name)
table.insert(self.collision_classes[c_class_name].post, collision_class_name)
end
end
self:collisionClassesSet()
end
function World:collisionClassesSet()
self:generateCategoriesMasks()
self:collisionClear()
local collision_table = self:getCollisionCallbacksTable()
for collision_class_name, collision_list in pairs(collision_table) do
for _, collision_info in ipairs(collision_list) do
if collision_info.type == 'enter' then self:addCollisionEnter(collision_class_name, collision_info.other) end
if collision_info.type == 'exit' then self:addCollisionExit(collision_class_name, collision_info.other) end
if collision_info.type == 'pre' then self:addCollisionPre(collision_class_name, collision_info.other) end
if collision_info.type == 'post' then self:addCollisionPost(collision_class_name, collision_info.other) end
end
end
self:collisionEventsClear()
end
function World:collisionClear()
self.collisions = {}
self.collisions.on_enter = {}
self.collisions.on_enter.sensor = {}
self.collisions.on_enter.non_sensor = {}
self.collisions.on_exit = {}
self.collisions.on_exit.sensor = {}
self.collisions.on_exit.non_sensor = {}
self.collisions.pre = {}
self.collisions.pre.sensor = {}
self.collisions.pre.non_sensor = {}
self.collisions.post = {}
self.collisions.post.sensor = {}
self.collisions.post.non_sensor = {}
end
function World:collisionEventsClear()
local bodies = self.box2d_world:getBodies()
for _, body in ipairs(bodies) do
local collider = body:getFixtures()[1]:getUserData()
collider:collisionEventsClear()
end
end
function World:addCollisionEnter(type1, type2)
if not self:isCollisionBetweenSensors(type1, type2) then
table.insert(self.collisions.on_enter.non_sensor, {type1 = type1, type2 = type2})
else table.insert(self.collisions.on_enter.sensor, {type1 = type1, type2 = type2}) end
end
function World:addCollisionExit(type1, type2)
if not self:isCollisionBetweenSensors(type1, type2) then
table.insert(self.collisions.on_exit.non_sensor, {type1 = type1, type2 = type2})
else table.insert(self.collisions.on_exit.sensor, {type1 = type1, type2 = type2}) end
end
function World:addCollisionPre(type1, type2)
if not self:isCollisionBetweenSensors(type1, type2) then
table.insert(self.collisions.pre.non_sensor, {type1 = type1, type2 = type2})
else table.insert(self.collisions.pre.sensor, {type1 = type1, type2 = type2}) end
end
function World:addCollisionPost(type1, type2)
if not self:isCollisionBetweenSensors(type1, type2) then
table.insert(self.collisions.post.non_sensor, {type1 = type1, type2 = type2})
else table.insert(self.collisions.post.sensor, {type1 = type1, type2 = type2}) end
end
function World:doesType1IgnoreType2(type1, type2)
local collision_ignores = {}
for collision_class_name, collision_class in pairs(self.collision_classes) do
collision_ignores[collision_class_name] = collision_class.ignores or {}
end
local all = {}
for collision_class_name, _ in pairs(collision_ignores) do
table.insert(all, collision_class_name)
end
local ignored_types = {}
for _, collision_class_type in ipairs(collision_ignores[type1]) do
if collision_class_type == 'All' then
for _, collision_class_name in ipairs(all) do
table.insert(ignored_types, collision_class_name)
end
else table.insert(ignored_types, collision_class_type) end
end
for key, _ in pairs(collision_ignores[type1]) do
if key == 'except' then
for _, except_type in ipairs(collision_ignores[type1].except) do
for i = #ignored_types, 1, -1 do
if ignored_types[i] == except_type then table.remove(ignored_types, i) end
end
end
end
end
for _, ignored_type in ipairs(ignored_types) do
if ignored_type == type2 then return true end
end
end
function World:isCollisionBetweenSensors(type1, type2)
if not self.is_sensor_memo[type1] then self.is_sensor_memo[type1] = {} end
if not self.is_sensor_memo[type1][type2] then self.is_sensor_memo[type1][type2] = (self:doesType1IgnoreType2(type1, type2) or self:doesType1IgnoreType2(type2, type1)) end
if self.is_sensor_memo[type1][type2] then return true
else return false end
end
-- https://love2d.org/forums/viewtopic.php?f=4&t=75441
function World:generateCategoriesMasks()
local collision_ignores = {}
for collision_class_name, collision_class in pairs(self.collision_classes) do
collision_ignores[collision_class_name] = collision_class.ignores or {}
end
local incoming = {}
local expanded = {}
local all = {}
for object_type, _ in pairs(collision_ignores) do
incoming[object_type] = {}
expanded[object_type] = {}
table.insert(all, object_type)
end
for object_type, ignore_list in pairs(collision_ignores) do
for key, ignored_type in pairs(ignore_list) do
if ignored_type == 'All' then
for _, all_object_type in ipairs(all) do
table.insert(incoming[all_object_type], object_type)
table.insert(expanded[object_type], all_object_type)
end
elseif type(ignored_type) == 'string' then
if ignored_type ~= 'All' then
table.insert(incoming[ignored_type], object_type)
table.insert(expanded[object_type], ignored_type)
end
end
if key == 'except' then
for _, except_ignored_type in ipairs(ignored_type) do
for i, v in ipairs(incoming[except_ignored_type]) do
if v == object_type then
table.remove(incoming[except_ignored_type], i)
break
end
end
end
for _, except_ignored_type in ipairs(ignored_type) do
for i, v in ipairs(expanded[object_type]) do
if v == except_ignored_type then
table.remove(expanded[object_type], i)
break
end
end
end
end
end
end
local edge_groups = {}
for k, v in pairs(incoming) do
table.sort(v, function(a, b) return string.lower(a) < string.lower(b) end)
end
local i = 0
for k, v in pairs(incoming) do
local str = ""
for _, c in ipairs(v) do
str = str .. c
end
if not edge_groups[str] then i = i + 1; edge_groups[str] = {n = i} end
table.insert(edge_groups[str], k)
end
local categories = {}
for k, _ in pairs(collision_ignores) do
categories[k] = {}
end
for k, v in pairs(edge_groups) do
for i, c in ipairs(v) do
categories[c] = v.n
end
end
for k, v in pairs(expanded) do
local category = {categories[k]}
local current_masks = {}
for _, c in ipairs(v) do
table.insert(current_masks, categories[c])
end
self.masks[k] = {categories = category, masks = current_masks}
end
end
function World:getCollisionCallbacksTable()
local collision_table = {}
for collision_class_name, collision_class in pairs(self.collision_classes) do
collision_table[collision_class_name] = {}
for _, v in ipairs(collision_class.enter or {}) do table.insert(collision_table[collision_class_name], {type = 'enter', other = v}) end
for _, v in ipairs(collision_class.exit or {}) do table.insert(collision_table[collision_class_name], {type = 'exit', other = v}) end
for _, v in ipairs(collision_class.pre or {}) do table.insert(collision_table[collision_class_name], {type = 'pre', other = v}) end
for _, v in ipairs(collision_class.post or {}) do table.insert(collision_table[collision_class_name], {type = 'post', other = v}) end
end
return collision_table
end
local function collEnsure(collision_class_name1, a, collision_class_name2, b)
if a.collision_class == collision_class_name2 and b.collision_class == collision_class_name1 then return b, a
else return a, b end
end
local function collIf(collision_class_name1, collision_class_name2, a, b)
if (a.collision_class == collision_class_name1 and b.collision_class == collision_class_name2) or
(a.collision_class == collision_class_name2 and b.collision_class == collision_class_name1) then
return true
else return false end
end
function World.collisionOnEnter(fixture_a, fixture_b, contact)
local a, b = fixture_a:getUserData(), fixture_b:getUserData()
if fixture_a:isSensor() and fixture_b:isSensor() then
if a and b then
for _, collision in ipairs(a.world.collisions.on_enter.sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
table.insert(a.collision_events[collision.type2], {collision_type = 'enter', collider_1 = a, collider_2 = b, contact = contact})
if collision.type1 == collision.type2 then
table.insert(b.collision_events[collision.type1], {collision_type = 'enter', collider_1 = b, collider_2 = a, contact = contact})
end
end
end
end
elseif not (fixture_a:isSensor() or fixture_b:isSensor()) then
if a and b then
for _, collision in ipairs(a.world.collisions.on_enter.non_sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
table.insert(a.collision_events[collision.type2], {collision_type = 'enter', collider_1 = a, collider_2 = b, contact = contact})
if collision.type1 == collision.type2 then
table.insert(b.collision_events[collision.type1], {collision_type = 'enter', collider_1 = b, collider_2 = a, contact = contact})
end
end
end
end
end
end
function World.collisionOnExit(fixture_a, fixture_b, contact)
local a, b = fixture_a:getUserData(), fixture_b:getUserData()
if fixture_a:isSensor() and fixture_b:isSensor() then
if a and b then
for _, collision in ipairs(a.world.collisions.on_exit.sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
table.insert(a.collision_events[collision.type2], {collision_type = 'exit', collider_1 = a, collider_2 = b, contact = contact})
if collision.type1 == collision.type2 then
table.insert(b.collision_events[collision.type1], {collision_type = 'exit', collider_1 = b, collider_2 = a, contact = contact})
end
end
end
end
elseif not (fixture_a:isSensor() or fixture_b:isSensor()) then
if a and b then
for _, collision in ipairs(a.world.collisions.on_exit.non_sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
table.insert(a.collision_events[collision.type2], {collision_type = 'exit', collider_1 = a, collider_2 = b, contact = contact})
if collision.type1 == collision.type2 then
table.insert(b.collision_events[collision.type1], {collision_type = 'exit', collider_1 = b, collider_2 = a, contact = contact})
end
end
end
end
end
end
function World.collisionPre(fixture_a, fixture_b, contact)
local a, b = fixture_a:getUserData(), fixture_b:getUserData()
if fixture_a:isSensor() and fixture_b:isSensor() then
if a and b then
for _, collision in ipairs(a.world.collisions.pre.sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
a:preSolve(b, contact)
if collision.type1 == collision.type2 then
b:preSolve(a, contact)
end
end
end
end
elseif not (fixture_a:isSensor() or fixture_b:isSensor()) then
if a and b then
for _, collision in ipairs(a.world.collisions.pre.non_sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
a:preSolve(b, contact)
if collision.type1 == collision.type2 then
b:preSolve(a, contact)
end
end
end
end
end
end
function World.collisionPost(fixture_a, fixture_b, contact, ni1, ti1, ni2, ti2)
local a, b = fixture_a:getUserData(), fixture_b:getUserData()
if fixture_a:isSensor() and fixture_b:isSensor() then
if a and b then
for _, collision in ipairs(a.world.collisions.post.sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
a:postSolve(b, contact, ni1, ti1, ni2, ti2)
if collision.type1 == collision.type2 then
b:postSolve(a, contact, ni1, ti1, ni2, ti2)
end
end
end
end
elseif not (fixture_a:isSensor() or fixture_b:isSensor()) then
if a and b then
for _, collision in ipairs(a.world.collisions.post.non_sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
a:postSolve(b, contact, ni1, ti1, ni2, ti2)
if collision.type1 == collision.type2 then
b:postSolve(a, contact, ni1, ti1, ni2, ti2)
end
end
end
end
end
end
function World:newCircleCollider(x, y, r, settings)
return self.wf.Collider.new(self, 'Circle', x, y, r, settings)
end
function World:newRectangleCollider(x, y, w, h, settings)
return self.wf.Collider.new(self, 'Rectangle', x, y, w, h, settings)
end
function World:newBSGRectangleCollider(x, y, w, h, corner_cut_size, settings)
return self.wf.Collider.new(self, 'BSGRectangle', x, y, w, h, corner_cut_size, settings)
end
function World:newPolygonCollider(vertices, settings)
return self.wf.Collider.new(self, 'Polygon', vertices, settings)
end
function World:newLineCollider(x1, y1, x2, y2, settings)
return self.wf.Collider.new(self, 'Line', x1, y1, x2, y2, settings)
end
function World:newChainCollider(vertices, loop, settings)
return self.wf.Collider.new(self, 'Chain', vertices, loop, settings)
end
-- Internal AABB box2d query used before going for more specific and precise computations.
function World:_queryBoundingBox(x1, y1, x2, y2)
local colliders = {}
local callback = function(fixture)
if not fixture:isSensor() then table.insert(colliders, fixture:getUserData()) end
return true
end
self.box2d_world:queryBoundingBox(x1, y1, x2, y2, callback)
return colliders
end
function World:collisionClassInCollisionClassesList(collision_class, collision_classes)
if collision_classes[1] == 'All' then
local all_collision_classes = {}
for class, _ in pairs(self.collision_classes) do
table.insert(all_collision_classes, class)
end
if collision_classes.except then
for _, except in ipairs(collision_classes.except) do
for i, class in ipairs(all_collision_classes) do
if class == except then
table.remove(all_collision_classes, i)
break
end
end
end
end
for _, class in ipairs(all_collision_classes) do
if class == collision_class then return true end
end
else
for _, class in ipairs(collision_classes) do
if class == collision_class then return true end
end
end
end
function World:queryCircleArea(x, y, radius, collision_class_names)
if not collision_class_names then collision_class_names = {'All'} end
if self.query_debug_drawing_enabled then table.insert(self.query_debug_draw, {type = 'circle', x = x, y = y, r = radius, frames = self.draw_query_for_n_frames}) end
local colliders = self:_queryBoundingBox(x-radius, y-radius, x+radius, y+radius)
local outs = {}
for _, collider in ipairs(colliders) do
if self:collisionClassInCollisionClassesList(collider.collision_class, collision_class_names) then
for _, fixture in ipairs(collider.body:getFixtures()) do
if self.wf.Math.polygon.getCircleIntersection(x, y, radius, {collider.body:getWorldPoints(fixture:getShape():getPoints())}) then
table.insert(outs, collider)
break
end
end
end
end
return outs
end
function World:queryRectangleArea(x, y, w, h, collision_class_names)
if not collision_class_names then collision_class_names = {'All'} end
if self.query_debug_drawing_enabled then table.insert(self.query_debug_draw, {type = 'rectangle', x = x, y = y, w = w, h = h, frames = self.draw_query_for_n_frames}) end
local colliders = self:_queryBoundingBox(x, y, x+w, y+h)
local outs = {}
for _, collider in ipairs(colliders) do
if self:collisionClassInCollisionClassesList(collider.collision_class, collision_class_names) then
for _, fixture in ipairs(collider.body:getFixtures()) do
if self.wf.Math.polygon.isPolygonInside({x, y, x+w, y, x+w, y+h, x, y+h}, {collider.body:getWorldPoints(fixture:getShape():getPoints())}) then
table.insert(outs, collider)
break
end
end
end
end
return outs
end
function World:queryPolygonArea(vertices, collision_class_names)
if not collision_class_names then collision_class_names = {'All'} end
if self.query_debug_drawing_enabled then table.insert(self.query_debug_draw, {type = 'polygon', vertices = vertices, frames = self.draw_query_for_n_frames}) end
local cx, cy = self.wf.Math.polygon.getCentroid(vertices)
local d_max = 0
for i = 1, #vertices, 2 do
local d = self.wf.Math.line.getLength(cx, cy, vertices[i], vertices[i+1])
if d > d_max then d_max = d end
end
local colliders = self:_queryBoundingBox(cx-d_max, cy-d_max, cx+d_max, cy+d_max)
local outs = {}
for _, collider in ipairs(colliders) do
if self:collisionClassInCollisionClassesList(collider.collision_class, collision_class_names) then
for _, fixture in ipairs(collider.body:getFixtures()) do
if self.wf.Math.polygon.isPolygonInside(vertices, {collider.body:getWorldPoints(fixture:getShape():getPoints())}) then
table.insert(outs, collider)
break
end
end
end
end
return outs
end
function World:queryLine(x1, y1, x2, y2, collision_class_names)
if not collision_class_names then collision_class_names = {'All'} end
if self.query_debug_drawing_enabled then
table.insert(self.query_debug_draw, {type = 'line', x1 = x1, y1 = y1, x2 = x2, y2 = y2, frames = self.draw_query_for_n_frames})
end
local colliders = {}
local callback = function(fixture, ...)
if not fixture:isSensor() then table.insert(colliders, fixture:getUserData()) end
return 1
end
self.box2d_world:rayCast(x1, y1, x2, y2, callback)
local outs = {}
for _, collider in ipairs(colliders) do
if self:collisionClassInCollisionClassesList(collider.collision_class, collision_class_names) then
table.insert(outs, collider)
end
end
return outs
end
function World:addJoint(joint_type, ...)
local args = {...}
if args[1].body then args[1] = args[1].body end
if type(args[2]) == "table" and args[2].body then args[2] = args[2].body end
local joint = love.physics['new' .. joint_type](unpack(args))
return joint
end
function World:removeJoint(joint)
joint:destroy()
end
function World:destroy()
local bodies = self.box2d_world:getBodies()
for _, body in ipairs(bodies) do
local collider = body:getFixtures()[1]:getUserData()
collider:destroy()
end
local joints = self.box2d_world:getJoints()
for _, joint in ipairs(joints) do joint:destroy() end
self.box2d_world:destroy()
self.box2d_world = nil
end
local Collider = {}
Collider.__index = Collider
local generator = love.math.newRandomGenerator(os.time())
local function UUID()
local fn = function(x)
local r = generator:random(16) - 1
r = (x == "x") and (r + 1) or (r % 4) + 9
return ("0123456789abcdef"):sub(r, r)
end
return (("xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx"):gsub("[xy]", fn))
end
function Collider.new(world, collider_type, ...)
local self = {}
self.id = UUID()
self.world = world
self.type = collider_type
self.object = nil
self.shapes = {}
self.fixtures = {}
self.sensors = {}
self.collision_events = {}
self.collision_stay = {}
self.enter_collision_data = {}
self.exit_collision_data = {}
self.stay_collision_data = {}
local args = {...}
local shape, fixture
if self.type == 'Circle' then
self.collision_class = (args[4] and args[4].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, args[1], args[2], (args[4] and args[4].body_type) or 'dynamic')
shape = love.physics.newCircleShape(args[3])
elseif self.type == 'Rectangle' then
self.collision_class = (args[5] and args[5].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, args[1] + args[3]/2, args[2] + args[4]/2, (args[5] and args[5].body_type) or 'dynamic')
shape = love.physics.newRectangleShape(args[3], args[4])
elseif self.type == 'BSGRectangle' then
self.collision_class = (args[6] and args[6].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, args[1] + args[3]/2, args[2] + args[4]/2, (args[6] and args[6].body_type) or 'dynamic')
local w, h, s = args[3], args[4], args[5]
shape = love.physics.newPolygonShape({
-w/2, -h/2 + s, -w/2 + s, -h/2,
w/2 - s, -h/2, w/2, -h/2 + s,
w/2, h/2 - s, w/2 - s, h/2,
-w/2 + s, h/2, -w/2, h/2 - s
})
elseif self.type == 'Polygon' then
self.collision_class = (args[2] and args[2].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, 0, 0, (args[2] and args[2].body_type) or 'dynamic')
shape = love.physics.newPolygonShape(unpack(args[1]))
elseif self.type == 'Line' then
self.collision_class = (args[5] and args[5].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, 0, 0, (args[5] and args[5].body_type) or 'dynamic')
shape = love.physics.newEdgeShape(args[1], args[2], args[3], args[4])
elseif self.type == 'Chain' then
self.collision_class = (args[3] and args[3].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, 0, 0, (args[3] and args[3].body_type) or 'dynamic')
shape = love.physics.newChainShape(args[1], unpack(args[2]))
end
-- Define collision classes and attach them to fixture and sensor
fixture = love.physics.newFixture(self.body, shape)
if self.world.masks[self.collision_class] then
fixture:setCategory(unpack(self.world.masks[self.collision_class].categories))
fixture:setMask(unpack(self.world.masks[self.collision_class].masks))
end
fixture:setUserData(self)
local sensor = love.physics.newFixture(self.body, shape)
sensor:setSensor(true)
sensor:setUserData(self)
self.shapes['main'] = shape
self.fixtures['main'] = fixture
self.sensors['main'] = sensor
self.shape = shape
self.fixture = fixture
self.preSolve = function() end
self.postSolve = function() end
-- Points all body, fixture and shape functions to this wf.Collider object
-- This means that the user can call collider:setLinearVelocity for instance without having to say collider.body:setLinearVelocity
for k, v in pairs(self.body.__index) do
if k ~= '__gc' and k ~= '__eq' and k ~= '__index' and k ~= '__tostring' and k ~= 'destroy' and k ~= 'type' and k ~= 'typeOf' then
self[k] = function(self, ...)
return v(self.body, ...)
end
end
end
for k, v in pairs(self.fixture.__index) do
if k ~= '__gc' and k ~= '__eq' and k ~= '__index' and k ~= '__tostring' and k ~= 'destroy' and k ~= 'type' and k ~= 'typeOf' then
self[k] = function(self, ...)
return v(self.fixture, ...)
end
end
end
for k, v in pairs(self.shape.__index) do
if k ~= '__gc' and k ~= '__eq' and k ~= '__index' and k ~= '__tostring' and k ~= 'destroy' and k ~= 'type' and k ~= 'typeOf' then
self[k] = function(self, ...)
return v(self.shape, ...)
end
end
end
return setmetatable(self, Collider)
end
function Collider:collisionEventsClear()
self.collision_events = {}
for other, _ in pairs(self.world.collision_classes) do
self.collision_events[other] = {}
end
end
function Collider:setCollisionClass(collision_class_name)
if not self.world.collision_classes[collision_class_name] then error("Collision class " .. collision_class_name .. " doesn't exist.") end
self.collision_class = collision_class_name
for _, fixture in pairs(self.fixtures) do
if self.world.masks[collision_class_name] then
fixture:setCategory(unpack(self.world.masks[collision_class_name].categories))
fixture:setMask(unpack(self.world.masks[collision_class_name].masks))
end
end
end
function Collider:enter(other_collision_class_name)
local events = self.collision_events[other_collision_class_name]
if events and #events >= 1 then
for _, e in ipairs(events) do
if e.collision_type == 'enter' then
if not self.collision_stay[other_collision_class_name] then self.collision_stay[other_collision_class_name] = {} end
table.insert(self.collision_stay[other_collision_class_name], {collider = e.collider_2, contact = e.contact})
self.enter_collision_data[other_collision_class_name] = {collider = e.collider_2, contact = e.contact}
return true
end
end
end
end
function Collider:getEnterCollisionData(other_collision_class_name)
return self.enter_collision_data[other_collision_class_name]
end
function Collider:exit(other_collision_class_name)
local events = self.collision_events[other_collision_class_name]
if events and #events >= 1 then
for _, e in ipairs(events) do
if e.collision_type == 'exit' then
if self.collision_stay[other_collision_class_name] then
for i = #self.collision_stay[other_collision_class_name], 1, -1 do
local collision_stay = self.collision_stay[other_collision_class_name][i]
if collision_stay.collider.id == e.collider_2.id then table.remove(self.collision_stay[other_collision_class_name], i) end
end
end
self.exit_collision_data[other_collision_class_name] = {collider = e.collider_2, contact = e.contact}
return true
end
end
end
end
function Collider:getExitCollisionData(other_collision_class_name)
return self.exit_collision_data[other_collision_class_name]
end
function Collider:stay(other_collision_class_name)
if self.collision_stay[other_collision_class_name] then
if #self.collision_stay[other_collision_class_name] >= 1 then
return true
end
end
end
function Collider:getStayCollisionData(other_collision_class_name)
return self.collision_stay[other_collision_class_name]
end
function Collider:setPreSolve(callback)
self.preSolve = callback
end
function Collider:setPostSolve(callback)
self.postSolve = callback
end
function Collider:setObject(object)
self.object = object
end
function Collider:getObject()
return self.object
end
function Collider:addShape(shape_name, shape_type, ...)
if self.shapes[shape_name] or self.fixtures[shape_name] then error("Shape/fixture " .. shape_name .. " already exists.") end
local args = {...}
local shape = love.physics['new' .. shape_type](unpack(args))
local fixture = love.physics.newFixture(self.body, shape)
if self.world.masks[self.collision_class] then
fixture:setCategory(unpack(self.world.masks[self.collision_class].categories))
fixture:setMask(unpack(self.world.masks[self.collision_class].masks))
end
fixture:setUserData(self)
local sensor = love.physics.newFixture(self.body, shape)
sensor:setSensor(true)
sensor:setUserData(self)
self.shapes[shape_name] = shape
self.fixtures[shape_name] = fixture
self.sensors[shape_name] = sensor
end
function Collider:removeShape(shape_name)
if not self.shapes[shape_name] then return end
self.shapes[shape_name] = nil
self.fixtures[shape_name]:setUserData(nil)
self.fixtures[shape_name]:destroy()
self.fixtures[shape_name] = nil
self.sensors[shape_name]:setUserData(nil)
self.sensors[shape_name]:destroy()
self.sensors[shape_name] = nil
end
function Collider:destroy()
self.collision_stay = nil
self.enter_collision_data = nil
self.exit_collision_data = nil
self:collisionEventsClear()
self:setObject(nil)
for name, _ in pairs(self.fixtures) do
self.shapes[name] = nil
self.fixtures[name]:setUserData(nil)
self.fixtures[name] = nil
self.sensors[name]:setUserData(nil)
self.sensors[name] = nil
end
self.body:destroy()
self.body = nil
end
wf.World = World
wf.Collider = Collider
return wf

@ -0,0 +1,568 @@
0.11.0
====
Added:
----
- mlib.vec2 component
To-Do:
----
- Update README.md
- Update spec.lua
- Fix tabbing
0.10.1
====
Added:
----
- Point category
- point.rotate
- point.scale
- point.polarToCartesian
- point.cartesianToPolar
Changed:
----
- math.getPercent now returns decimals (instead of percentages) since those are more common to use.
To-Do:
----
- Determine if isCompletelyInsideFunctions should return true with tangents.
- Check argument order for logicality and consistency.
- Add error checking.
- Make sure to see if any aliases were missed. (e.g. isSegmentInside)
- Clean up and correct README (add "Home" link, etc.)
0.10.0
====
Added:
----
Changed:
----
- mlib.line.segment is now mlib.segment.
- mlib.line.getIntercept has been renamed to mlib.line.getYIntercept
- mlib.line.getYIntercept now returns the x-coordinate for vertical lines instead of false.
- mlib.line.getYIntercept now returns the value `isVertical` as the second return value.
- mlib.line.getPerpendicularBisector is now mlib.segment.getPerpendicularBisector.
Fixed:
----
- mlib.line.getIntersection now should handle vertical slopes better.
- mlib.line.getClosestPoint now uses local function checkFuzzy for checking horizontal lines.
- Fixed possible bug in mlib.line.getSegmentIntersection and vertical lines.
- mlib.segment.getIntersection now uses fuzzy checking for parallel lines.
- mlib.math.round is now much more efficient.
- Removed some useless code from mlib.polygon.isSegmentInside.
To-Do:
----
- Determine if isCompletelyInsideFunctions should return true with tangents.
- Check argument order for logicality and consistency.
- Improve speed.
- Add error checking.
- Make sure to see if any aliases were missed. (e.g. isSegmentInside)
- Implement mlib.shapes again(?)
- Clean up and correct README (add "Home" link, etc.)
0.9.4
====
Added:
----
Changed:
----
- mlib.line.getDistance is now slightly faster.
- Made code much easier to debug by using new utility `cycle`.
- Added new utility.
- Various other minor changes.
Removed:
----
- Unused local utility function copy
To-Do
----
- Determine if isCompletelyInsideFunctions should return true with tangents.
- Make argument order more logical.
- Improve speed and error checking.
- Make sure to see if any aliases were missed. (e.g. isSegmentInside)
- Implement mlib.shapes again(?)
- Clean up README (add "Home" link, etc.)
0.9.3
====
Added:
----
- milb.circle.isCircleCompletelyInside
- mlib.circle.isPolygonCompletelyInside
- milb.circle.isSegmentCompletelyInside
- mlib.polygon.isCircleCompletelyInside
- mlib.polygon.isPolygonCompletelyInside
- mlib.polygon.isSegmentCompletelyInside
- ALIASES -
- mlib.circle.getPolygonIntersection
- mlib.circle.isCircleInsidePolygon
- mlib.circle.isCircleCompletelyInsidePolygon
- milb.line.getCircleIntersection
- milb.line.getPolygonIntersection
- milb.line.getLineIntersection
- mlib.line.segment.getCircleIntersection
- mlib.line.segment.getPolygonIntersection
- mlib.line.segment.getLineIntersection
- mlib.line.segment.getSegmentIntersection
- mlib.line.segment.isSegmentCompletelyInsideCircle
- mlib.line.segment.isSegmentCompletelyInsidePolygon
- mlib.polygon.isCircleCompletelyOver
Changed:
----
- mlib.circle.getCircleIntersection now returns 'inside' instead of 'intersection' if the point has not intersections but is within the circle.
- Fixed problem involving mlib.circle.getSegmentIntersection
- README.md now has more information on how to run specs and other minor improvements.
- Fixed some commenting on explanation of derivation of mlib.line.getIntersection.
- Updated the example to use the current version of mlib.
- Made/Changed some comments in the example main.lua.
Removed:
----
To-Do
----
- Make examples file on github (examples/shapes/main.lua, etc.) not just one line.
- Determine if isCompletelyInsideFunctions should return true with tangents.
- Make argument order more logical.
- Make sure to see if any aliases were missed. (e.g. isSegmentInside)
- Update spec links in README
0.9.2
====
Added:
----
Changed:
----
- mlib.polygon.getPolygonIntersection now does not create duplicate local table.
- mlib.line.getPerpendicularSlope now does not create a global variable.
- mlib.math.getSummation now allows the error to go through instead of returning false if the stop value is not a number.
- Changed any instance of the term "userdata" with "input"
Removed:
----
0.9.1
====
Added:
----
- Added mlib.statistics.getCentralTendency
- Added mlib.statistics.getDispersion
- Added mlib.statistics.getStandardDeviation
- Added mlib.statistics.getVariation
- Added mlib.statistics.getVariationRatio
Removed:
----
Changed:
----
- FIX: mlib.polygon.checkPoint now handles vertices better.
To-Do
----
- Add more functions.
0.9.0
====
Added:
----
- mlib.line.getDistance as an alias for mlib.line.getLength.
- mlib.line.checkPoint
- Internal documentation.
Removed:
----
- mlib.circle.isPointInCircle is replaced with mlib.circle.checkPoint
- mlib.circle.checkPoint is replaced with mlib.circle.isPointOnCircle
- Variation of mlib.circle.getLineIntersection( cx, cy, radius, slope, intercept ) is no longer supported, as it can cause errors with vertical lines.
Changed:
----
- CHANGE: mlib.line.getIntersection now returns true for colinear lines.
- CHANGE: mlib.line.getIntersection now returns true if the line are collinear.
- CHANGE: mlib.line.getIntersection now returns true if vertical lines are collinear.
- CHANGE: mlib.line.getSegmentIntersection now returns true if the line and segment are collinear.
- CHANGE: Changed the order of mlib.line.segment.checkPoint arguments.
- NAME: mlib.polygon.lineIntersects is now mlib.polygon.getLineIntersection
- NAME: mlib.polygon.lineSegmentIntersects is now mlib.polygon.getSegmentIntersection
- NAME: mlib.polygon.isLineSegmentInside is now mlib.polygon.isSegmentInside
- NAME: mlib.polygon.polygonIntersects is now mlib.polygon.getPolygonIntersection
- CHANGED: mlib.circle.checkPoint now takes arguments ( px, py, cx, cy, radius ).
- CHANGED: mlib.circle.isPointOnCircle now takes arguments ( px, py, cx, cy, radius ).
- NAME: mlib.polygon.circleIntersects is now mlib.polygon.getCircleIntersection
- NAME: mlib.circle.isLineSecant is now mlib.circle.getLineIntersection
- NAME: mlib.circle.isSegmentSecant is now mlib.circle.getSegmentIntersection
- NAME: mlib.circle.circlesIntersects is now mlib.circle.getCircleIntersection
- CHANGE: Added types 'tangent' and 'intersection' to mlib.circle.getCircleIntersection.
- NAME: mlib.math.getRootsOfQuadratic is now mlib.math.getQuadraticRoots
- CHANGE: mlib.math.getRoot now only returns the positive, since it there is not always negatives.
- NAME: mlib.math.getPercent is now mlib.math.getPercentage
- Cleaned up code (added comments, spaced lines, etc.)
- Made syntax that uses camelCase instead of CamelCase.
- Match style of more programmers.
- Easier to type.
- Moved to semantic numbering.
- Made any returns strings lower-case.
- Updated specs for missing functions.
To-Do
----
- Update readme.
- Add mlib.statistics.getStandardDeviation
- Add mlib.statistics.getMeasuresOfCentralTendency
- Add mlib.statistics.getMeasuresOfDispersion
1.1.0.2
====
Added:
----
- MLib.Polygon.IsPolygonInside
Removed:
----
- Removed all MLib.Shape:
- Was very slow.
- Could not define custom callbacks.
- Allow for flexibility.
Changed:
----
- Switched MLib.Line.GetIntersection back to the old way
- MLib.Line.GetSegmentIntersection now returns 4 values if the lines are parallel.
TODO:
- Make it so that MLib.Shape objects can use ':' syntax for other functions (i.e. MLib.Line.GetLength for Line objects, etc.)
- Intuitive error messages.
1.1.0.1
====
Added:
----
Removed:
----
Changed:
- MLib.Line.GetIntersection now returns true, instead of two points.
----
Fixed:
----
- MLib.Line.GetIntersection now handles vertical lines: returns true if they collide, false otherwise.
- MLib.Polygon.LineIntersects now also handles verticals.
TODO:
- Fix
- MLib.Shape Table can't have metatables.
1.1.0.0
====
Added:
----
- MLib.Polygon.IsCircleInside
- MLib.Polygon.LineSegmentIntersects
- MLib.Polygon.IsLineSegmentInside
- MLib.Statistics.GetFrequency
- MLib.Math.Factorial
- MLib.Math.SystemOfEquations
Removed:
----
Changed:
----
- MLib.Polygon.LineIntersects is now MLib.Polygon.LineSegmentIntersects.
- Put Word-wrap on Changes.txt
Fixed:
----
- Problems with numberous MLib.Polygon and MLib.Circle problems.
TODO:
- Fix
- MLib.Shape Table can't have metatables.
1.0.0.3
====
Added:
----
Removed:
----
Changed:
----
Fixed:
----
- README.md
TODO:
- Add:
- Frequency
- Binomial Probability
- Standard Deviation
- Conditional Probability
1.0.0.2
====
Added:
----
Removed:
----
- Ability to use a direction for Math.GetAngle's 5th argument instead of having a third point. See Fixed for more.
Changed:
----
- Changed README.md for clarity and consistency.
- Updated spec.lua
- See Fixed for more.
Fixed:
----
- Circle.IsSegmentSecant now properly accounts for chords actually being chords, and not secants.
- Circle.CircleIntersects now can return 'Colinear' or 'Equal' if the circles have same x and y but different radii (Colinear) or are exactly the same (Equal).
- Statistics.GetMode now returns a table with the modes, and the second argument as the number of times they appear.
- Math.GetRoot now returns the negative number as a second argument.
- Math.GetPercentOfChange now works for 0 to 0 (previously false).
- Math.GetAngle now takes only three points and no direction option.
- Typos in Shape.CheckCollisions and Shape.Remove.
- Fixed nil problems in Shape.CheckCollisions.
- Improved readablility and DRYness of Shape.CheckCollisions.
- Bugs in Shape.Remove and Shape.CheckCollisions regarding passing tables as arguments.
TODO:
- Add:
- Frequency
- Binomial Probability
- Standard Deviation
- Conditional Probability
1.0.0.1
====
Added:
----
Removed:
----
Changed:
----
- Changes.txt now expanded to include short excertps from all previous commits.
- Changed release number from 3.0.0 to 1.0.0.1
- Math.Round now can round to decimal places as the second argument.
- Commented unnecessary call of Segment.CheckPoint in Polygon.LineIntersects.
- Polygon.LineIntersects now returns where the lines intersect.
- false if not intersection.
- A table with all of the intersections { { px, py } }
- Same with Polygon.PolygonIntersects, Polygon.CircleIntersects,
Fixed:
----
- Error with GetSlope being called incorrectly.
- README.md Line.GetPerpendicularSlope misdirection.
- Same with Line.GetPerpendicularBisector, Line.Segment.GetIntersection, Circle.IsLineSecant, Circle.IsSegmentSecant, Statistics.GetMean, Median, Mode, and Range, and Shape:Remove, and fixed the naming for Shape:CheckCollisions and Shape:Remove.
- Clarified README.md
- Made util SortWithReferences local.
- Errors caused by local functions.
TODO:
- Add:
- Frequency
- Binomial Probability
- Standard Deviation
- Conditional Probability
3.0.0
-----
ADDED:
- Added function GetSignedArea.
REMOVED:
- Removed drawing functions.
- Removed MLib.Line.Functions entirely.
CHANGED:
- Changed all the names to CamelCase.
- Changed module name to MLib.
- Changed return order of GetPerpendicualrBisector from Slope, Midpoint to Midpoint, Slope.
- Changed returned string of MLib.circle.isLineSecant to be upper-case.
- Changed IsPrime to accept only one number at a time.
- Changed NewShape's type to Capitals.
Related to code:
- Added more accuarate comments.
- Made code more DRY.
- Made code monkey-patchable and saved space (by declaring all functions as local values then inserted them into a large table.
TODO:
- Make LineIntersectsPolygon return where intersection occurs.
- Ditto with PolygonIntersectsPolygon.
- Add:
- Frequency
- Binomial Probability
- Standard Deviation
- Conditional Probability
Not as accurately maintained before 2.0.2
-----------------------------------------
2.0.2
-----
- Cleaned up code, mostly.
2.0.1
-----
- Bug fixes, mlib.shape:remove & demos added.
2.0.0
-----
- Added mlib.shape and various bug fixes.
2.0.0
-----
- Made mlib.shape and made numberous bug fixes.
1.9.4
-----
- Made mlib.math.prime faster and removed ability to test multiple numbers at once. Thanks Robin!
1.9.3
-----
- Fixed polygon.area and polygon.centroid
1.9.2
-----
- Updated to LOVE 0.9.0.
1.9.1
-----
- Made mlib.line.closestPoint able to take either two points on the slope or the slope and intercept.
1.9.0
-----
- Added mlib.lineSegmentIntersects (no affiliation with previous one (changed to mlib.line.segment.intersect)) and mlib.line.closestPoint
1.8.3
-----
- Changed naming mechanism to be more organized.
1.8.2
-----
- "Fixed" mlib.lineSegmentsIntersect AGAIN!!!! :x
1.8.1
-----
- Removed a print statement.
1.8.0
-----
- mlib.pointInPolygon added
1.7.5
-----
- mlib.lineSegmentsIntersect vertical lines fixed again. This time for real. I promise... or hope, at least... :P
1.7.4
-----
- mlib.lineSegmentsIntersect vertical parallels fixed
1.7.3
-----
- mlib.lineSegmentsIntersect parallels fixed
1.7.2
-----
- mlib.lineSegmentsIntersect now handles vertical lines
1.7.1
-----
- mlib.lineSegmentsIntersect now returns the two places in between where the line segments begin to intersect.
1.7.0
-----
- Added mlib.circlesIntersect, mlib.pointOnLineSegment, mlib.linesIntersect, and mlib.lineSegmentsIntersect
1.6.1
-----
- Employed usage of summations for mlib.getPolygonArea and mlib.getPolygonCentroid and removed area as an argument for mlib.getPolygonCentroid.
1.6.0
-----
- Added several functions.
1.5.0
-----
- Made lots of changes to syntax to make it easier to use (hopefully). I also put out specs.
1.4.1
-----
- Localized mlib. Thanks, Yonaba!
1.4.0
-----
- Added mlib.getPolygonCentroid (gets the midpoint of a non-self-intersecting polygons)
1.3.2
-----
- Made mlib.getPrime take tables as arguments, so you can check all the values of a table.
1.3.1
-----
- Changed name method to mlib.getPolygonArea
1.3.0
-----
- Added mlib.get_polygon_area and removed mlib.get_convex_area and mlib.get_triangle_area since they are repetitive.
1.2.2
-----
- Made functions return faster, functions that previously returned tables now return multiple arguments.
1.2.1
-----
- Localized functions, made tables acceptable as arguments, refined function speed, mlib.get_mode now returns number most repeated as well as how many times.
1.2.0
-----
- Added mlib.get_angle
1.1.0
-----
- Added mlib.get_convex_area
1.0.4
-----
- Fixed get_mode to handle bimodials.
1.0.3
-----
- Prime Checker optimized (hopefully final update on this.)
1.0.2
-----
- Prime checker now works! (At least to 1000. I haven't tested any
further)
1.0.1
-----
- 'Fixed' the prime checker
1.0.0
-----
- Initial release

@ -0,0 +1,17 @@
Copyright (c) 2015 Davis Claiborne
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgement in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

@ -0,0 +1,890 @@
MLib
====
__MLib__ is a math and shape-intersection detection library written in Lua. It's aim is to be __robust__ and __easy to use__.
__NOTE:__
- I am (slowly) working on completely rewriting this in order to be easier to use and less bug-prone. You can check out the progress [here](../../tree/dev).
- I am currently slowing development of MLib while moving over to helping with [CPML](https://github.com/excessive/cpml). To discuss this, please comment [here](../../issues/12).
If you are looking for a library that handles updating/collision responses for you, take a look at [hxdx](https://github.com/adonaac/hxdx). It uses MLib functions as well as Box2d to handle physics calculations.
## Downloading
You can download the latest __stable__ version of MLib by downloading the latest [release](../../releases/).
You can download the latest __working__ version of MLib by downloading the latest [commit](../../commits/master/). Documentation will __only__ be updated upon releases, not upon commits.
## Implementing
To use MLib, simply place [mlib.lua](mlib.lua) inside the desired folder in your project. Then use the `require 'path.to.mlib'` to use any of the functions.
## Examples
If you don't have [LÖVE](https://love2d.org/) installed, you can download the .zip of the demo from the [Executables](Examples/Executables) folder and extract and run the .exe that way.
You can see some examples of the code in action [here](Examples).
All examples are done using the *awesome* engine of [LÖVE](https://love2d.org/).
To run them properly, download the [.love file](Examples/LOVE) and install LÖVE to your computer.
After that, make sure you set .love files to open with "love.exe".
For more, see [here](https://love2d.org/).
## When should I use MLib?
- If you need to know exactly where two objects intersect.
- If you need general mathematical equations to be done.
- If you need very precise details about point intersections.
## When should I __not__ use MLib?
- All of the objects in a platformer, or other game, for instance, should not be registered with MLib. Only ones that need very specific information.
- When you don't need precise information/odd shapes.
## Specs
#### For Windows
If you run Windows and have Telescope in `%USERPROFILE%\Documents\GitHub` (you can also manually change the path in [test.bat](test.bat)) you can simply run [test.bat](test.bat) and it will display the results, and then clean up after it's finished.
#### Default
Alternatively, you can find the tests [here](spec.lua). Keep in mind that you may need to change certain semantics to suit your OS.
You can run them via [Telescope](https://github.com/norman/telescope/) and type the following command in the command-line of the root folder:
```
tsc -f specs.lua
```
If that does not work, you made need to put a link to Lua inside of the folder for `telescope` and run the following command:
```
lua tsc -f specs.lua
```
If you encounter further errors, try to run the command line as an administrator (usually located in `C:\Windows\System32\`), then right-click on `cmd.exe` and select `Run as administrator`, then do
```
cd C:\Path\to\telescope\
```
And __then__ run one of the above commands. If none of those work, just take my word for it that all the tests pass and look at this picture.
![Success](Reference Pictures/Success.png)
## Functions
- [mlib.line](#mlibline)
- [mlib.line.checkPoint](#mliblinecheckpoint)
- [mlib.line.getClosestPoint](#mliblinegetclosestpoint)
- [mlib.line.getYIntercept](#mliblinegetintercept)
- [mlib.line.getIntersection](#mliblinegetintersection)
- [mlib.line.getLength](#mliblinegetlength)
- [mlib.line.getMidpoint](#mliblinegetmidpoint)
- [mlib.line.getPerpendicularSlope](#mliblinegetperpendicularslope)
- [mlib.line.getSegmentIntersection](#mliblinegetsegmentintersection)
- [mlib.line.getSlope](#mliblinegetslope)
- [mlib.segment](#mlibsegment)
- [mlib.segment.checkPoint](#mlibsegmentcheckpoint)
- [mlib.segment.getPerpendicularBisector](#mlibsegmentgetperpendicularbisector)
- [mlib.segment.getIntersection](#mlibsegmentgetintersection)
- [mlib.polygon](#mlibpolygon)
- [mlib.polygon.checkPoint](#mlibpolygoncheckpoint)
- [mlib.polygon.getCentroid](#mlibpolygongetcentroid)
- [mlib.polygon.getCircleIntersection](#mlibpolygongetcircleintersection)
- [mlib.polygon.getLineIntersection](#mlibpolygongetlineintersection)
- [mlib.polygon.getPolygonArea](#mlibpolygongetpolygonarea)
- [mlib.polygon.getPolygonIntersection](#mlibpolygongetpolygonintersection)
- [mlib.polygon.getSegmentIntersection](#mlibpolygongetsegmentintersection)
- [mlib.polygon.getSignedPolygonArea](#mlibpolygongetsignedpolygonarea)
- [mlib.polygon.getTriangleHeight](#mlibpolygongettriangleheight)
- [mlib.polygon.isCircleInside](#mlibpolygoniscircleinside)
- [mlib.polygon.isCircleCompletelyInside](#mlibpolygoniscirclecompletelyinside)
- [mlib.polygon.isPolygonInside](#mlibpolygonispolygoninside)
- [mlib.polygon.isPolygonCompletelyInside](#mlibpolygonispolygoncompletelyinside)
- [mlib.polygon.isSegmentInside](#mlibpolygonissegmentinside)
- [mlib.polygon.isSegmentCompletelyInside](#mlibpolygonissegmentcompletelyinside)
- [mlib.circle](#mlibcircle)
- [mlib.circle.checkPoint](#mlibcirclecheckpoint)
- [mlib.circle.getArea](#mlibcirclegetarea)
- [mlib.circle.getCircleIntersection](#mlibcirclegetcircleintersection)
- [mlib.circle.getCircumference](#mlibcirclegetcircumference)
- [mlib.circle.getLineIntersection](#mlibcirclegetlineintersection)
- [mlib.circle.getSegmentIntersection](#mlibcirclegetsegmentintersection)
- [mlib.circle.isCircleCompletelyInside](#mlibcircleiscirclecompletelyinside)
- [mlib.circle.isCircleCompletelyInsidePolygon](#mlibcircleiscirclecompletelyinsidepolygon)
- [mlib.circle.isPointOnCircle](#mlibcircleispointoncircle)
- [mlib.circle.isPolygonCompletelyInside](#mlibcircleispolygoncompletelyinside)
- [mlib.statistics](#mlibstatistics)
- [mlib.statistics.getCentralTendency](#mlibstatisticsgetcentraltendency)
- [mlib.statistics.getDispersion](#mlibstatisticsgetdispersion)
- [mlib.statistics.getMean](#mlibstatisticsgetmean)
- [mlib.statistics.getMedian](#mlibstatisticsgetmedian)
- [mlib.statistics.getMode](#mlibstatisticsgetmode)
- [mlib.statistics.getRange](#mlibstatisticsgetrange)
- [mlib.statistics.getStandardDeviation](#mlibstatisticsgetstandarddeviation)
- [mlib.statistics.getVariance](#mlibstatisticsgetvariance)
- [mlib.statistics.getVariationRatio](#mlibstatisticsgetvariationratio)
- [mlib.math](#mlibmath)
- [mlib.math.getAngle](#mlibmathgetangle)
- [mlib.math.getPercentage](#mlibmathgetpercentage)
- [mlib.math.getPercentOfChange](#mlibmathgetpercentofchange)
- [mlib.math.getQuadraticRoots](#mlibmathgetquadraticroots)
- [mlib.math.getRoot](#mlibmathgetroot)
- [mlib.math.getSummation](#mlibmathgetsummation)
- [mlib.math.isPrime](#mlibmathisprime)
- [mlib.math.round](#mlibmathround)
- [Aliases](#aliases)
#### mlib.line
- Deals with linear aspects, such as slope and length.
##### mlib.line.checkPoint
- Checks if a point lies on a line.
- Synopsis:
- `onPoint = mlib.line.checkPoint( px, px, x1, y1, x2, y2 )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being tested.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates of the line being tested.
- Returns:
- `onPoint`: Boolean.
- `true` if the point is on the line.
- `false` if it does not.
- Notes:
- You cannot use the format `mlib.line.checkPoint( px, px, slope, intercept )` because this would lead to errors on vertical lines.
##### mlib.line.getClosestPoint
- Gives the closest point to a line.
- Synopses:
- `cx, cy = mlib.line.getClosestPoint( px, py, x1, y1, x2, y2 )`
- `cx, cy = mlib.line.getClosestPoint( px, py, slope, intercept )`
- Arguments:
- `x`, `y`: Numbers. The x and y coordinates of the point.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates on the line.
- `slope`, `intercept`:
- Numbers. The slope and y-intercept of the line.
- Booleans (`false`). The slope and y-intercept of a vertical line.
- Returns:
- `cx`, `cy`: Numbers. The closest points that lie on the line to the point.
##### mlib.line.getYIntercept
- Gives y-intercept of the line.
- Synopses:
- `intercept, isVertical = mlib.line.getYIntercept( x1, y1, x2, y2 )`
- `intercept, isVertical = mlib.line.getYIntercept( x1, y1, slope )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates that lie on the line.
- `slope`:
- Number. The slope of the line.
- Returns:
- `intercept`:
- Number. The y-intercept of the line.
- Number. The `x1` coordinate of the line if the line is vertical.
- `isVertical`:
- Boolean. `true` if the line is vertical, `false` if the line is not vertical.
##### mlib.line.getIntersection
- Gives the intersection of two lines.
- Synopses:
- `x, y = mlib.line.getIntersection( x1, y1, x2, y2, x3, y3, x4, y4 )`
- `x, y = mlib.line.getIntersection( slope1, intercept1, x3, y3, x4, y4 )`
- `x, y = mlib.line.getIntersection( slope1, intercept1, slope2, intercept2 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates that lie on the first line.
- `x3`, `y3`, `x4`, `y4`: Numbers. Two x and y coordinates that lie on the second line.
- `slope1`, `intercept1`:
- Numbers. The slope and y-intercept of the first line.
- Booleans (`false`). The slope and y-intercept of the first line (if the first line is vertical).
- `slope2`, `intercept2`:
- Numbers. The slope and y-intercept of the second line.
- Booleans (`false`). The slope and y-intercept of the second line (if the second line is vertical).
- Returns:
- `x`, `y`:
- Numbers. The x and y coordinate where the lines intersect.
- Boolean:
- `true`, `nil`: The lines are collinear.
- `false`, `nil`: The lines are parallel and __not__ collinear.
##### mlib.line.getLength
- Gives the distance between two points.
- Synopsis:
- `length = mlib.line.getLength( x1, y1, x2, y2 )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `length`: Number. The distance between the two points.
##### mlib.line.getMidpoint
- Gives the midpoint of two points.
- Synopsis:
- `x, y = mlib.line.getMidpoint( x1, y1, x2, y2 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `x`, `y`: Numbers. The midpoint x and y coordinates.
##### mlib.line.getPerpendicularSlope
- Gives the perpendicular slope of a line.
- Synopses:
- `perpSlope = mlib.line.getPerpendicularSlope( x1, y1, x2, y2 )`
- `perpSlope = mlib.line.getPerpendicularSlope( slope )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- `slope`: Number. The slope of the line.
- Returns:
- `perpSlope`:
- Number. The perpendicular slope of the line.
- Boolean (`false`). The perpendicular slope of the line (if the original line was horizontal).
##### mlib.line.getSegmentIntersection
- Gives the intersection of a line segment and a line.
- Synopses:
- `x1, y1, x2, y2 = mlib.line.getSegmentIntersection( x1, y1, x2, y2, x3, y3, x4, y4 )`
- `x1, y1, x2, y2 = mlib.line.getSegmentIntersection( x1, y1, x2, y2, slope, intercept )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates that lie on the line segment.
- `x3`, `y3`, `x4`, `y4`: Numbers. Two x and y coordinates that lie on the line.
- `slope`, `intercept`:
- Numbers. The slope and y-intercept of the the line.
- Booleans (`false`). The slope and y-intercept of the line (if the line is vertical).
- Returns:
- `x1`, `y1`, `x2`, `y2`:
- Number, Number, Number, Number.
- The points of the line segment if the line and segment are collinear.
- Number, Number, Boolean (`nil`), Boolean (`nil`).
- The coordinate of intersection if the line and segment intersect and are not collinear.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`),
- Boolean (`nil`). If the line and segment don't intersect.
##### mlib.line.getSlope
- Gives the slope of a line.
- Synopsis:
- `slope = mlib.line.getSlope( x1, y1, x2, y2 )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `slope`:
- Number. The slope of the line.
- Boolean (`false`). The slope of the line (if the line is vertical).
#### mlib.segment
- Deals with line segments.
##### mlib.segment.checkPoint
- Checks if a point lies on a line segment.
- Synopsis:
- `onSegment = mlib.segment.checkPoint( px, py, x1 y1, x2, y2 )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being checked.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `onSegment`: Boolean.
- `true` if the point lies on the line segment.
- `false` if the point does not lie on the line segment.
##### mlib.segment.getPerpendicularBisector
- Gives the perpendicular bisector of a line.
- Synopsis:
- `x, y, slope = mlib.segment.getPerpendicularBisector( x1, y1, x2, y2 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `x`, `y`: Numbers. The midpoint of the line.
- `slope`:
- Number. The perpendicular slope of the line.
- Boolean (`false`). The perpendicular slope of the line (if the original line was horizontal).
##### mlib.segment.getIntersection
- Checks if two line segments intersect.
- Synopsis:
- `cx1, cy1, cx2, cy2 = mlib.segment.getIntersection( x1, y1, x2, y2, x3, y3 x4, y4 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates of the first line segment.
- `x3`, `y3`, `x4`, `y4`: Numbers. Two x and y coordinates of the second line segment.
- Returns:
- `cx1`, `cy1`, `cx2`, `cy2`:
- Number, Number, Number, Number.
- The points of the resulting intersection if the line segments are collinear.
- Number, Number, Boolean (`nil`), Boolean (`nil`).
- The point of the resulting intersection if the line segments are not collinear.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`) , Boolean (`nil`).
- If the line segments don't intersect.
#### mlib.polygon
- Handles aspects involving polygons.
##### mlib.polygon.checkPoint
- Checks if a point is inside of a polygon.
- Synopses:
- `inPolygon = mlib.polygon.checkPoint( px, py, vertices )`
- `inPolygon = mlib.polygon.checkPoint( px, py, ... )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinate of the point being checked.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the point is inside the polygon.
- `false` if the point is not inside the polygon.
##### mlib.polygon.getCentroid
- Returns the centroid of the polygon.
- Synopses:
- `cx, cy = mlib.polygon.getCentroid( vertices )`
- `cx, cy = mlib.polygon.getCentroid( ... )`
- Arguments:
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `cx`, `cy`: Numbers. The x and y coordinates of the centroid.
##### mlib.polygon.getCircleIntersection
- Returns the coordinates of where a circle intersects a polygon.
- Synopses:
- `intersections = mlib.polygon.getCircleIntersection( cx, cy, radius, vertices )`
- `intersections = mlib.polygon.getCircleIntersection( cx, cy, radius, ... )
- Arguments:
- `cx`, `cy`: Number. The coordinates of the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `intersections`: Table. Contains the intersections and type.
- Example:
```lua
local tab = _.polygon.getCircleIntersection( 5, 5, 1, 4, 4, 6, 4, 6, 6, 4, 6 )
for i = 1, # tab do
print( i .. ':', unpack( tab[i] ) )
end
-- 1: tangent 5 4
-- 2: tangent 6 5
-- 3: tangent 5 6
-- 4: tagnent 4 5
```
- For more see [mlib.circle.getSegmentIntersection](#mlibcirclegetsegmentintersection) or the [specs](spec.lua# L676)
##### mlib.polygon.getLineIntersection
- Returns the coordinates of where a line intersects a polygon.
- Synopses:
- `intersections = mlib.polygon.getLineIntersection( x1, y1, x2, y2, vertices )`
- `intersections = mlib.polygon.getLineIntersection( x1, y1, x2, y2, ... )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `intersections`: Table. Contains the intersections.
- Notes:
- With collinear lines, they are actually broken up. i.e. `{ 0, 4, 0, 0 }` would become `{ 0, 4 }, { 0, 0 }`.
##### mlib.polygon.getPolygonArea
- Gives the area of a polygon.
- Synopses:
- `area = mlib.polygon.getArea( vertices )`
- `area = mlib.polygon.getArea( ... )
- Arguments:
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `area`: Number. The area of the polygon.
##### mlib.polygon.getPolygonIntersection
- Gives the intersection of two polygons.
- Synopsis:
- `intersections = mlib.polygon.getPolygonIntersections( polygon1, polygon2 )`
- Arguments:
- `polygon1`: Table. The vertices of the first polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `polygon2`: Table. The vertices of the second polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- Returns:
- `intersections`: Table. A table of the points of intersection.
##### mlib.polygon.getSegmentIntersection
- Returns the coordinates of where a line segmeing intersects a polygon.
- Synopses:
- `intersections = mlib.polygon.getSegmentIntersection( x1, y1, x2, y2, vertices )`
- `intersections = mlib.polygon.getSegmentIntersection( x1, y1, x2, y2, ... )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `intersections`: Table. Contains the intersections.
- Notes:
- With collinear line segments, they are __not__ broken up. See the [specs](spec.lua# L508) for more.
##### mlib.polygon.getSignedPolygonArea
- Gets the signed area of the polygon. If the points are ordered counter-clockwise the area is positive. If the points are ordered clockwise the number is negative.
- Synopses:
- `area = mlib.polygon.getLineIntersection( vertices )`
- `area = mlib.polygon.getLineIntersection( ... )
- Arguments:
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `area`: Number. The __signed__ area of the polygon. If the points are ordered counter-clockwise the area is positive. If the points are ordered clockwise the number is negative.
##### mlib.polygon.getTriangleHeight
- Gives the height of a triangle.
- Synopses:
- `height = mlib.polygon.getTriangleHeigh( base, x1, y1, x2, y2, x3, y3 )`
- `height = mlib.polygon.getTriangleHeight( base, area )`
- Arguments:
- `base`: Number. The length of the base of the triangle.
- `x1`, `y1`, `x2`, `y2`, `x3`, `y3`: Numbers. The x and y coordinates of the triangle.
- `area`: Number. The regular area of the triangle. __Not__ the signed area.
- Returns:
- `height`: Number. The height of the triangle.
##### mlib.polygon.isCircleInside
- Checks if a circle is inside the polygon.
- Synopses:
- `inPolygon = mlib.polygon.isCircleInside( cx, cy, radius, vertices )`
- `inPolygon = mlib.polygon.isCircleInside( cx, cy, radius, ... )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the circle is inside the polygon.
- `false` if the circle is not inside the polygon.
- Notes:
- Only returns true if the center of the circle is inside the circle.
##### mlib.polygon.isCircleCompletelyInside
- Checks if a circle is completely inside the polygon.
- Synopses:
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, vertices )`
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, ... )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the circle is __completely__ inside the polygon.
- `false` if the circle is not inside the polygon.
##### mlib.polygon.isPolygonInside
- Checks if a polygon is inside a polygon.
- Synopsis:
- `inPolygon = mlib.polygon.isPolygonInside( polygon1, polygon2 )`
- Arguments:
- `polygon1`: Table. The vertices of the first polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `polygon2`: Table. The vertices of the second polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- Returns:
- `inPolygon`: Boolean.
- `true` if the `polygon2` is inside of `polygon1`.
- `false` if `polygon2` is not inside of `polygon2`.
- Notes:
- Returns true as long as any of the line segments of `polygon2` are inside of the `polygon1`.
##### mlib.polygon.isPolygonCompletelyInside
- Checks if a polygon is completely inside a polygon.
- Synopsis:
- `inPolygon = mlib.polygon.isPolygonCompletelyInside( polygon1, polygon2 )`
- Arguments:
- `polygon1`: Table. The vertices of the first polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `polygon2`: Table. The vertices of the second polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- Returns:
- `inPolygon`: Boolean.
- `true` if the `polygon2` is __completely__ inside of `polygon1`.
- `false` if `polygon2` is not inside of `polygon2`.
##### mlib.polygon.isSegmentInside
- Checks if a line segment is inside a polygon.
- Synopses:
- `inPolygon = mlib.polygon.isSegmentInside( x1, y1, x2, y2, vertices )`
- `inPolygon = mlib.polygon.isSegmentInside( x1, y1, x2, y2, ... )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. The x and y coordinates of the line segment.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the line segment is inside the polygon.
- `false` if the line segment is not inside the polygon.
- Note:
- Only one of the points has to be in the polygon to be considered 'inside' of the polygon.
- This is really just a faster version of [mlib.polygon.getPolygonIntersection](#mlibpolygongetpolygonintersection) that does not give the points of intersection.
##### mlib.polygon.isSegmentCompletelyInside
- Checks if a line segment is completely inside a polygon.
- Synopses:
- `inPolygon = mlib.polygon.isSegmentCompletelyInside( x1, y1, x2, y2, vertices )`
- `inPolygon = mlib.polygon.isSegmentCompletelyInside( x1, y1, x2, y2, ... )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. The x and y coordinates of the line segment.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the line segment is __completely__ inside the polygon.
- `false` if the line segment is not inside the polygon.
#### mlib.circle
- Handles aspects involving circles.
##### mlib.circle.checkPoint
- Checks if a point is on the inside or on the edge the circle.
- Synopsis:
- `inCircle = mlib.circle.checkPoint( px, px, cx, cy, radius )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being tested.
- `cx`, `cy`: Numbers. The x and y coordinates of the center of the circle.
- `radius`: Number. The radius of the circle.
- Returns:
- `inCircle`: Boolean.
- `true` if the point is inside or on the circle.
- `false` if the point is outside of the circle.
##### mlib.circle.getArea
- Gives the area of a circle.
- Synopsis:
- `area = mlib.circle.getArea( radius )`
- Arguments:
- `radius`: Number. The radius of the circle.
- Returns:
- `area`: Number. The area of the circle.
##### mlib.circle.getCircleIntersection
- Gives the intersections of two circles.
- Synopsis:
- `intersections = mlib.circle.getCircleIntersection( c1x, c1y, radius1, c2x, c2y, radius2 )
- Arguments:
- `c1x`, `c1y`: Numbers. The x and y coordinate of the first circle.
- `radius1`: Number. The radius of the first circle.
- `c2x`, `c2y`: Numbers. The x and y coordinate of the second circle.
- `radius2`: Number. The radius of the second circle.
- Returns:
- `intersections`: Table. A table that contains the type and where the circle collides. See the [specs](spec.lua# L698) for more.
##### mlib.circle.getCircumference
- Returns the circumference of a circle.
- Synopsis:
- `circumference = mlib.circle.getCircumference( radius )`
- Arguments:
- `radius`: Number. The radius of the circle.
- Returns:
- `circumference`: Number. The circumference of a circle.
##### mlib.circle.getLineIntersection
- Returns the intersections of a circle and a line.
- Synopsis:
- `intersections = mlib.circle.getLineIntersections( cx, cy, radius, x1, y1, x2, y2 )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates the lie on the line.
- Returns:
- `intersections`: Table. A table with the type and where the intersections happened. Table is formatted:
- `type`, `x1`, `y1`, `x2`, `y2`
- String (`'secant'`), Number, Number, Number, Number
- The numbers are the x and y coordinates where the line intersects the circle.
- String (`'tangent'`), Number, Number, Boolean (`nil`), Boolean (`nil`)
- `x1` and `x2` represent where the line intersects the circle.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`)
- No intersection.
- For more see the [specs](spec.lua# L660).
##### mlib.circle.getSegmentIntersection
- Returns the intersections of a circle and a line segment.
- Synopsis:
- `intersections = mlib.circle.getSegmentIntersections( cx, cy, radius, x1, y1, x2, y2 )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `x1`, `y1`, `x2`, `y2`: Numbers. The two x and y coordinates of the line segment.
- Returns:
- `intersections`: Table. A table with the type and where the intersections happened. Table is formatted:
- `type`, `x1`, `y1`, `x2`, `y2`
- String (`'chord'`), Number, Number, Number, Number
- The numbers are the x and y coordinates where the line segment is on both edges of the circle.
- String (`'enclosed'`), Number, Number, Number, Number
- The numbers are the x and y coordinates of the line segment if it is fully inside of the circle.
- String (`'secant'`), Number, Number, Number, Number
- The numbers are the x and y coordinates where the line segment intersects the circle.
- String (`'tangent'`), Number, Number, Boolean (`nil`), Boolean (`nil`)
- `x1` and `x2` represent where the line segment intersects the circle.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`)
- No intersection.
- For more see the [specs](spec.lua# L676).
##### mlib.circle.isCircleCompletelyInside
- Checks if one circle is completely inside of another circle.
- Synopsis:
- `completelyInside = mlib.circle.isCircleCompletelyInside( c1x, c1y, c1radius, c2x, c2y, c2radius )`
- Arguments:
- `c1x`, `c1y`: Numbers. The x and y coordinates of the first circle.
- `c1radius`: Number. The radius of the first circle.
- `c2x`, `c2y`: Numbers. The x and y coordinates of the second circle.
- `c2radius`: Number. The radius of the second circle.
- Returns:
- `completelyInside`: Boolean.
- `true` if circle1 is inside of circle2.
- `false` if circle1 is not __completely__ inside of circle2.
##### mlib.circle.isCircleCompletelyInsidePolygon
- Checks if a circle is completely inside the polygon.
- Synopses:
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, vertices )`
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, ... )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the circle is __completely__ inside the polygon.
- `false` if the circle is not inside the polygon.
##### mlib.circle.isPointOnCircle
- Checks if a point is __exactly__ on the edge of the circle.
- Synopsis:
- `onCircle = mlib.circle.checkPoint( px, px, cx, cy, radius )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being tested.
- `cx`, `cy`: Numbers. The x and y coordinates of the center of the circle.
- `radius`: Number. The radius of the circle.
- Returns:
- `onCircle`: Boolean.
- `true` if the point is on the circle.
- `false` if the point is on the inside or outside of the circle.
- Notes:
- Will return false if the point is inside __or__ outside of the circle.
##### mlib.circle.isPolygonCompletelyInside
- Checks if a polygon is completely inside of a circle.
- Synopsis:
- `completelyInside = mlib.circle.isPolygonCompletelyInside( circleX, circleY, circleRadius, vertices )`
- `completelyInside = mlib.circle.isPolygonCompletelyInside( circleX, circleY, circleRadius, ... )`
- Arguments:
- `circleX`, `circleY`: Numbers. The x and y coordinates of the circle.
- `circleRadius`: Number. The radius of the circle.
- `vertices`: Table. A table containing all of the vertices of the polygon.
- `...`: Numbers. All of the points of the polygon.
- Returns:
- `completelyInside`: Boolean.
- `true` if the polygon is inside of the circle.
- `false` if the polygon is not __completely__ inside of the circle.
#### mlib.statistics
- Handles statistical aspects of math.
##### mlib.statistics.getCentralTendency
- Gets the central tendency of the data.
- Synopses:
- `modes, occurrences, median, mean = mlib.statistics.getCentralTendency( data )`
- `modes, occurrences, median, mean = mlib.statistics.getCentralTendency( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `modes, occurrences`: Table, Number. The modes of the data and the number of times it occurs. See [mlib.statistics.getMode](#mlibstatisticsgetmode).
- `median`: Number. The median of the data set.
- `mean`: Number. The mean of the data set.
##### mlib.statistics.getDispersion
- Gets the dispersion of the data.
- Synopses:
- `variationRatio, range, standardDeviation = mlib.statistics.getDispersion( data )`
- `variationRatio, range, standardDeviation = mlib.statistics.getDispersion( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `variationRatio`: Number. The variation ratio of the data set.
- `range`: Number. The range of the data set.
- `standardDeviation`: Number. The standard deviation of the data set.
##### mlib.statistics.getMean
- Gets the arithmetic mean of the data.
- Synopses:
- `mean = mlib.statistics.getMean( data )`
- `mean = mlib.statistics.getMean( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `mean`: Number. The arithmetic mean of the data set.
##### mlib.statistics.getMedian
- Gets the median of the data set.
- Synopses:
- `median = mlib.statistics.getMedian( data )`
- `median = mlib.statistics.getMedian( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `median`: Number. The median of the data.
##### mlib.statistics.getMode
- Gets the mode of the data set.
- Synopses:
- `mode, occurrences = mlib.statistics.getMode( data )`
- `mode, occurrences = mlib.statistics.getMode( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `mode`: Table. The mode(s) of the data.
- `occurrences`: Number. The number of time the mode(s) occur.
##### mlib.statistics.getRange
- Gets the range of the data set.
- Synopses:
- `range = mlib.statistics.getRange( data )`
- `range = mlib.statistics.getRange( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `range`: Number. The range of the data.
##### mlib.statistics.getStandardDeviation
- Gets the standard deviation of the data.
- Synopses:
- `standardDeviation = mlib.statistics.getStandardDeviation( data )`
- `standardDeviation = mlib.statistics.getStandardDeviation( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `standardDeviation`: Number. The standard deviation of the data set.
##### mlib.statistics.getVariance
- Gets the variation of the data.
- Synopses:
- `variance = mlib.statistics.getVariance( data )`
- `variance = mlib.statistics.getVariance( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `variance`: Number. The variation of the data set.
##### mlib.statistics.getVariationRatio
- Gets the variation ratio of the data.
- Synopses:
- `variationRatio = mlib.statistics.getVariationRatio( data )`
- `variationRatio = mlib.statistics.getVariationRatio( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `variationRatio`: Number. The variation ratio of the data set.
#### mlib.math
- Miscellaneous functions that have no home.
##### mlib.math.getAngle
- Gets the angle between three points.
- Synopsis:
- `angle = mlib.math.getAngle( x1, y1, x2, y2, x3, y3 )`
- Arguments:
- `x1`, `y1`: Numbers. The x and y coordinates of the first point.
- `x2`, `y2`: Numbers. The x and y coordinates of the vertex of the two points.
- `x3`, `y3`: Numbers. The x and y coordinates of the second point.
##### mlib.math.getPercentage
- Gets the percentage of a number.
- Synopsis:
- `percentage = mlib.math.getPercentage( percent, number )`
- Arguments:
- `percent`: Number. The decimal value of the percent (i.e. 100% is 1, 50% is .5).
- `number`: Number. The number to get the percentage of.
- Returns:
- `percentage`: Number. The `percent`age or `number`.
##### mlib.math.getPercentOfChange
- Gets the percent of change from one to another.
- Synopsis:
- `change = mlib.math.getPercentOfChange( old, new )`
- Arguments:
- `old`: Number. The original number.
- `new`: Number. The new number.
- Returns:
- `change`: Number. The percent of change from `old` to `new`.
##### mlib.math.getQuadraticRoots
- Gets the quadratic roots of the the equation.
- Synopsis:
- `root1, root2 = mlib.math.getQuadraticRoots( a, b, c )`
- Arguments:
- `a`, `b`, `c`: Numbers. The a, b, and c values of the equation `a * x ^ 2 + b * x ^ 2 + c`.
- Returns:
- `root1`, `root2`: Numbers. The roots of the equation (where `a * x ^ 2 + b * x ^ 2 + c = 0`).
##### mlib.math.getRoot
- Gets the `n`th root of a number.
- Synopsis:
- `x = mlib.math.getRoot( number, root )`
- Arguments:
- `number`: Number. The number to get the root of.
- `root`: Number. The root.
- Returns:
- `x`: The `root`th root of `number`.
- Example:
```lua
local a = mlib.math.getRoot( 4, 2 ) -- Same as saying 'math.pow( 4, .5 )' or 'math.sqrt( 4 )' in this case.
local b = mlib.math.getRoot( 27, 3 )
print( a, b ) --> 2, 3
```
- For more, see the [specs](spec.lua# L860).
##### mlib.math.getSummation
- Gets the summation of numbers.
- Synopsis:
- `summation = mlib.math.getSummation( start, stop, func )`
- Arguments:
- `start`: Number. The number at which to start the summation.
- `stop`: Number. The number at which to stop the summation.
- `func`: Function. The method to add the numbers.
- Arguments:
- `i`: Number. Index.
- `previous`: Table. The previous values used.
- Returns:
- `Summation`: Number. The summation of the numbers.
- For more, see the [specs](spec.lua# L897).
##### mlib.math.isPrime
- Checks if a number is prime.
- Synopsis:
- `isPrime = mlib.math.isPrime( x )`
- Arguments:
- `x`: Number. The number to check if it's prime.
- Returns:
- `isPrime`: Boolean.
- `true` if the number is prime.
- `false` if the number is not prime.
##### mlib.math.round
- Rounds a number to the given decimal place.
- Synopsis:
- `rounded = mlib.math.round( number, [place] )
- Arguments:
- `number`: Number. The number to round.
- `place (1)`: Number. The decimal place to round to. Defaults to 1.
- Returns:
- The rounded number.
- For more, see the [specs](spec.lua# L881).
#### Aliases
| Alias | Corresponding Function |
| ----------------------------------------------|:---------------------------------------------------------------------------------:|
| milb.line.getDistance | [mlib.line.getLength](#mliblinegetlength) |
| mlib.line.getCircleIntersection | [mlib.circle.getLineIntersection](#mlibcirclegetlineintersection) |
| milb.line.getPolygonIntersection | [mlib.polygon.getLineIntersection](#mlibpolygongetlineintersection) |
| mlib.line.getLineIntersection | [mlib.line.getIntersection](#mliblinegetintersection) |
| mlib.segment.getCircleIntersection | [mlib.circle.getSegmentIntersection](#mlibcirclegetsegmentintersection) |
| milb.segment.getPolygonIntersection | [mlib.pollygon.getSegmentIntersection](#mlibpollygongetsegmentintersection) |
| mlib.segment.getLineIntersection | [mlib.line.getSegmentIntersection](#mliblinegetsegmentintersection) |
| mlib.segment.getSegmentIntersection | [mlib.segment.getIntersection](#mlibsegmentgetintersection) |
| milb.segment.isSegmentCompletelyInsideCircle | [mlib.circle.isSegmentCompletelyInside](#mlibcircleissegmentcompletelyinside) |
| mlib.segment.isSegmentCompletelyInsidePolygon | [mlib.polygon.isSegmentCompletelyInside](#mlibpolygonissegmentcompletelyinside) |
| mlib.circle.getPolygonIntersection | [mlib.polygon.getCircleIntersection](#mlibpolygongetcircleintersection) |
| mlib.circle.isCircleInsidePolygon | [mlib.polygon.isCircleInside](#mlibpolygoniscircleinside) |
| mlib.circle.isCircleCompletelyInsidePolygon | [mlib.polygon.isCircleCompletelyInside](#mlibpolygoniscirclecompletelyinside) |
| mlib.polygon.isCircleCompletelyOver | [mlib.circleisPolygonCompletelyInside](#mlibcircleispolygoncompletelyinside) |
## License
A math library made in Lua
copyright (C) 2014 Davis Claiborne
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Contact me at davisclaib at gmail.com

File diff suppressed because it is too large Load Diff

@ -0,0 +1,60 @@
function love.load()
Object = require("classic")
require("player")
require("bullet")
WF = require("libs/windfield")
require("UpdateGame")
require("DrawGame")
require("KeyPressed")
love.profiler = require("libs/profile")
love.profiler.start()
--WindField
World = WF.newWorld(0, 0) --no gravity
World:setQueryDebugDrawing(true) -- Draws the area of a query for 10 frames
World:addCollisionClass("Player1")
World:addCollisionClass("Bullet1")
World:addCollisionClass("Player2")
World:addCollisionClass("Bullet2")
HEALTH = 3
DELAY = 0.5
DebugFlag = false
EnableKeyPress1 = true
KeyPressTime1 = 0
KeyDelay1 = DELAY
EnableKeyPress2 = true
KeyPressTime2 = 0
KeyDelay2 = DELAY
UserPlayer1 = Player(1, 1000, 100, HEALTH, "assets/player1.png", 100)
UserPlayer2 = Player(2, 800, 300, HEALTH, "assets/player2.png", 100)
Bullets1 = {}
Bullets2 = {}
end
function love.keypressed(key)
KeyPressed(key)
end
love.frame = 0
function love.update(dt)
--[[
love.frame = love.frame + 1
if love.frame % 100 == 0 then
love.report = love.profiler.report(20)
love.profiler.reset()
end
]]
UpdateGame(dt)
end
function love.draw()
DrawGame()
if DebugFlag then
love.graphics.print("Debug Mode", 1200, 850)
-- love.graphics.print(love.report or "Please wait...")
end
end

@ -0,0 +1,104 @@
Player = Object:extend()
function Player:new(p, x, y, health, image, speed)
self.p = p
self.image = love.graphics.newImage(image)
self.x = x
self.y = y
self.health = health
self.speed = speed
self.width = self.image:getWidth()
self.height = self.image:getHeight()
--Collision Stuff
self.collider = World:newBSGRectangleCollider(x, y, 64, 64, 4)
self.collider:setPosition(self.x, self.y)
if self.p == 1 then
self.collider:setCollisionClass("Player1")
elseif self.p == 2 then
self.collider:setCollisionClass("Player2")
end
self.collider:setType("static")
self.collider:setObject(self)
--Rotation Stuff
self.rotation = math.rad(90)
self.rotSpeed = 2
self.scaleX = 1
self.scaleY = 1
self.originX = self.width / 2
self.originY = self.height / 2
end
function Player:update(dt)
local cos = math.cos
local sin = math.sin --optimisation
local bulletSpeed = 300
if self.p == 1 then
if love.keyboard.isDown("w") then
self.x = self.x + cos(self.rotation) * (self.speed * dt)
self.y = self.y + sin(self.rotation) * (self.speed * dt)
self.collider:setPosition(self.x, self.y)
elseif love.keyboard.isDown("s") then
self.x = self.x - cos(self.rotation) * (self.speed * dt)
self.y = self.y - sin(self.rotation) * (self.speed * dt)
self.collider:setPosition(self.x, self.y)
elseif love.keyboard.isDown("a") then
self.rotation = self.rotation - (self.rotSpeed * dt)
elseif love.keyboard.isDown("d") then
self.rotation = self.rotation + (self.rotSpeed * dt)
end
if EnableKeyPress1 == true then
if love.keyboard.isDown("space") then
local offsetX = math.cos(self.rotation) * self.width / 2
local offsetY = math.sin(self.rotation) * self.height / 2
local bulletX = self.x + offsetX
local bulletY = self.y + offsetY
local newBullet = Bullet(bulletX, bulletY, self.p, bulletSpeed, self.rotation)
table.insert(Bullets1, newBullet)
KeyPressTime1 = KeyDelay1
EnableKeyPress1 = false
end
end
--Query Collision
if self.collider:enter("Player2") then
local collision_data = self.collider:getEnterCollisionData("Player2")
print(collision_data)
end
end
if self.p == 2 then
if love.keyboard.isDown("up") then
self.x = self.x + cos(self.rotation) * (self.speed * dt)
self.y = self.y + sin(self.rotation) * (self.speed * dt)
self.collider:setPosition(self.x, self.y)
elseif love.keyboard.isDown("down") then
self.x = self.x - cos(self.rotation) * (self.speed * dt)
self.y = self.y - sin(self.rotation) * (self.speed * dt)
self.collider:setPosition(self.x, self.y)
elseif love.keyboard.isDown("left") then
self.rotation = self.rotation - (self.rotSpeed * dt)
elseif love.keyboard.isDown("right") then
self.rotation = self.rotation + (self.rotSpeed * dt)
end
if EnableKeyPress2 == true then
if love.keyboard.isDown("return") then
local offsetX = math.cos(self.rotation) * self.width / 2
local offsetY = math.sin(self.rotation) * self.height / 2
local bulletX = self.x + offsetX
local bulletY = self.y + offsetY
local newBullet = Bullet(bulletX, bulletY, self.p, bulletSpeed, self.rotation)
table.insert(Bullets2, newBullet)
KeyPressTime2 = KeyDelay2
EnableKeyPress2 = false
end
end
end
end
function Player:draw()
love.graphics.draw(self.image, self.x, self.y, self.rotation, self.scaleX, self.scaleY, self.originX, self.originY)
end
Loading…
Cancel
Save